Master of Computer Application (MCA - I) (CBCS Pattern) First Semester

PSMCAT104.1 - Paper-IV Elective-I : Discrete Mathematical Structure

	ages : e : Th	ree Hours * 3 2 0 2 *	GUG/W/18/11090 Max. Marks : 80
	Note	es: 1. All question are compulsory and carry equal marks. 2. Draw well labelled diagram whether necessary. 3. Avoid vague answers.	
1.		Either	
	a)	Suppose A, B, C are matrices then prove that - i) A(B + C) = AB + AC ii) (AB) C = A(BC)	8
	b)	Show that $P \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow M \text{ and } \neg M$	8
		OR	
	c)	Prove by mathematical induction that if A_1, A_2, A_3A_n are any n sets $i) \qquad \left(\bigcup_{i=1}^{\overline{n}} A_i\right) = \bigcap_{i=1}^{n} \overline{A_i}$	then - 8
		ii) $\bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \overline{A_i}$	
	d)	If $\begin{bmatrix} a+2b & 2a-b \\ 2c+d & c-2d \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 4 & -3 \end{bmatrix}$ Find a, b, c, d.	8
2.		Either	
	a)	How many distinguishable permutation of the letter in the word : i) BANANA ii) HIPPOPOTAMOUS iii) REQUIREMENTS iv) APPLE	8
	b)	Determine the value of 'n' if - i) $6 \times {}^{n}p_{3} = 3 \times {}^{n+1}p_{3}$ ii) $3 \times {}^{n}p_{4} = 7 \times {}^{n-1}p_{3}$	8

c) Prove that - $i) \qquad ^nC_r = \frac{n}{r} \times \ ^{n-1}C_{r-1}$ $ii) \qquad n \times \ ^{n-1}C_{r-1} = \ ^{(n-r+1)n}C_{r-1}$

OR

- d) Let R be the relation whose diagrapht is given below.
 - Find a cycle starting at vertex 6 i)
- and MR² ii)

8

8

8

8

8

3. Either

> a) Find Hamilton circuit for the given graph

> > В 2 D 6 G 3 3 2 6 2 \mathbf{C} A

Show the diagraphs are Isomorphic. b)

OR

Construct tree c)

 $(3*(1-x)) \div ((4+(y+2))) * (7+(z \div y))$

- ii) ((2+x)-(2*x))-(x-2)
- In Lattice prove that $(a*b) \oplus (a*c) \le a*[b \oplus (a*c)]$ d)

8

4. **Either**

> Let G be a group and let a and b be the element of G then a)

The equation ax = b has a unique solution in G. i)

ii) The equation ay = b has a unique solution in G.

GUG/W/18/11090

b) i) Construct the tree for - $(3*(1-x)) \div ((4+(7-(y+2)))*(7+(z\div y)))$

ii) $3-(x+(6*(4\div(2-3))))$

OR

c) Consider an Algebraic system (Q, *), where Q is the set of rational no and * is a binary operation defined by $a * b = a + b - ab \ \forall \ a, b \in Q$. Determine whether (Q, *) is a group.

d) Define derivation Tree with all it's tuples and give an example of -

8

8

- i) Left most derivation
- ii) Right most derivation
- iii) Parse tree

5. Attempt all question :

a) Obtain the principle disjunctive normal form of $\neg P \lor Q$.

4

b) Determine the value

i) ⁹P₃

ii) ${}^{50}C_4$

iii) ⁵⁴P₄

iv) $^{48}C_6$

c) Construct tree $(4+(y \div (6-2)))\times 7$

•

d) Draw the diagraph of finite state machine whose state transition is

4
