Electronics & Communication Engineering (CBCS Pattern) M.Tech. First Semester (Old-CBS Pattern) CBCS

ECE-102 / PECS141 - Elective-I : Information Theory And Coding

P. Pages Time : T	: 2 Three Hours	* 3 1 0 8 *	GUG/W/18/10982 Max. Marks : 70
No	otes : 1. 2.	Attempt any five questions. Illustrate your answers wherever necessary with the help of neat	sketches.
1. a)	What is algorith	Shannon's theorem. List out the properties of codes using Shannom.	on encoding 6
b)	Define I Conside probabil $P(x_1) = 0$ $P(x_2) = 0$ $P(x_3) = 0$ $P(x_4) = 0$ $P(x_5) = 0$ $P(x_6) = 0$ $P(x_7) = 0$ $P(x_8) = 0$ Find ent	Entropy. r a DMS w/m 8 possible symbols xi where $L = 1, 2, 3 \dots 8$ and the ities are 0.36 0.25 0.12 0.10 0.05 0.08 0.03 0.01 ropy of source and efficiency of code.	8 eir corresponding
2. a)	Derive t	he expression for channel capacity.	7
b)	Explain	source coding and channel coding. Explain the difference between	n them. 7
3. a)	Explain	Lempel - Ziv encoding algorithm with suitable example.	7
b)	Apply H [X] = [X] [P] = [Y] Suppose i) Av ii) En iii) Eff	luffman coding algorithm for the following messages - $X_1 X_2 X_3 X_4 X_5 X_6 X_7$] $Y_2 Y_4 Y_4 Y_8 Y_8 Y_{16} Y_{16}$] $Y_4 M = 2$ then find - erage length of codeword tropy ficiency of code	7
4. a)	Calculat Hammin $H = \begin{bmatrix} 1\\0\\0\\Find all \end{bmatrix}$	e the syndrome vector of a single bit error if the parity check matrix is given as - 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 the code vectors and find the error syndrome if there is error in th	rix of $(7, 4)$ 8 the 3^{rd} bit of the

4th code in the code sequence.

b)	What is the role of inter leaving in the performance of concatenated codes. How is it used to improve the performance of these codes ?	6	
a)	Discuss the role of d_{min} in error correction and detection methods.	7	
b)	Describe Viterbi decoding algorithm.	7	
a)	For a (2, 1, 3) convolution code described by $g_1 = [1 \ 0 \ 1]$ and $g_2 = [1 \ 1 \ 0]$ draw the state diagram, tree diagram and Trellis diagram.	8	
b)	Differentiate between convolution codes and block codes.	6	
a)	Explain iterative coding using in BCJR algorithm.	8	
b)	Discuss upper and lower bounds in linear codes.	6	
	Write short notes on any two.		
	a) Justeen codes.		
	b) Reed Solomon codes		
	c) Turbo codes		

	 b) a) b) a) b) b) 	 b) What is the role of inter leaving in the performance of concatenated codes. How is it used to improve the performance of these codes ? a) Discuss the role of d_{min} in error correction and detection methods. b) Describe Viterbi decoding algorithm. a) For a (2, 1, 3) convolution code described by g₁ = [1 0 1] and g₂ = [1 0] draw the state diagram, tree diagram and Trellis diagram. b) Differentiate between convolution codes and block codes. a) Explain iterative coding using in BCJR algorithm. b) Discuss upper and lower bounds in linear codes. Write short notes on any two. a) Justeen codes. b) Reed Solomon codes c) Turbo codes 	