B.Sc. (Information Technology)-I (CBCS Pattern) Second Semester CBCS UBITT204 - Discrete Mathematics Paper - IV

	Pages : ne : Thi	ree Hours * 3 0 5 5 *	GUG/W/18/10923 Max. Marks : 80
	Note	es: 1. All questions are compulsory and carry equal marks. 2. Draw neat and labelled diagram and use supporting data wherever 3. Avoid vague answers and write specific answer related to question	•
1.		Either	
	a)	Suppose that A, B, C are matrices, then prove that i) $(AB) C = A(BC)$ ii) $A(B+C) = AB + AC$	8
	b)	Let A, B & C be finite set, then $ A \bigcup B \bigcup C = A + B + C - A \cap B - B \cap C - A \cap C + A \cap B \cap C $	8
		OR	
	c)	Write notes on i) Subset ii) Power set	8
	d)	Prove that $A \cup B = A \cap B \Leftrightarrow A = B$.	8
2.	a)	Either To prove that i) $p(n, n) = 2 \times p(n, n-2)$ ii) $p(n, n) = p(n, n-1)$	8
	b)	Explain following i) Invertible (inverse) function ii) Identity functions	8
		OR	
	c)	Prove that i) $p(n,r) = p(n-1, r) + r \cdot p (n-1, r-1)$ ii) $p(n,r) = n \cdot p (n-1, r-1)$	8
	d)	Consider f, g, and h all functions on the Integers, by $f(n) = n^2$, $g(n) = n + h(n) = n - 1$. Determine i) $h \circ f \circ g$ ii) $g \circ f \circ h$ iii) $f \circ g \circ h$	1, and 8
3.	a)	Either Explain following i) Undirected Graphs. ii) Isomorphism of Graphs.	8

- b) Construct the following tree.
 - i) $((2+x)-(2\times x))-(x-2)$
- ii) $3-(x+(6*(4\div(2-3))))$

8

8

8

8

8

8

OR

c) Show that following Graph are isomorphic.

 μ_3 μ_4 μ_4

d) Define following terms.

- i) Mixed Graph
- iii) Null Graph

- ii) Multi Graph
- iv) Diagraph

4. Either

- a) Show that inverse of an element 'a' in the group in unique.
- b) Let T be the set of all even integer. Show that the semigroups (Z, +) and (T, +) are Isomorphic.

OR

- c) If H and K are subgroup of G. Show that $H \cap K$ is a subgroup of G.
- d) A non-empty subset H of the group G is subgroup of G if and only if
 - i) $a_1 b \in H \Rightarrow a_0 b \in H$
 - ii) $a \in H \Rightarrow a^{-1} \in H$
- **5.** Solve all the questions.
 - a) Construct the truth table for the formula.

$$\neg (P \land Q) \rightleftharpoons (\neg P \lor \neg Q)$$

- b) Determine the value of n if
 - i) $4 \times {}^{n}p_{3} = {}^{n+1}p_{3}$
 - ii) $6 \times {}^{n}p_{3} = 3 \times {}^{n+1}p_{3}$
- c) Explain spanning tree in brief.
- d) What is Abelian Group? Explain.
