B.A.LL.B (5Years) (with Credits)-Regular-Semester 2012 Sem II **LL-08 Course Code 2.2 : Philosophy-II Paper-II**

P. Pages: 3 Time: Three Hours				* 2 9 3 2 *		
		1. 2. 3.	Attempt eight questions in all including question no. 1 which in compulsory. All questions carry equal marks. Indicate appropriate question number while answering.			
1.	Choose the correct alternative for the given statement.					
	i)	Wl a) c)	nat do you mean by tautolog Truth Negative	gy? b) d)	Falsity None of these	
	ii)	Wl a) c)	nat is the symbol of conjunct.	etion? b)	v None of these	
	iii)	ŕ	or' and 'not' are referred as words Operators Both 'a' and 'b'	,	Ordinary term None of these	
	iv)	Ne a) c)	gation is applied to how ma One Three	any state b) d)	ment? Two Four	
	v)	Wl a) c)	nat are the examples of the Modus Tollens Exportation	rules of r b) d)	replacement? Conjunction None of these	
	vi)	Th a) c)	ere are how many rules of i Eight Seven	nference b) d)	? Ten Six	
	vii)	Pro a) c)	oving validity deals with Validity Argument	in 1 b) d)	logic. Invalidity None of these	
	viii) A (a) (c)	universal quantification is r Logical proposition Logical constant	eferred a b) d)		
	ix)	"If a) c)	and only if" is used for wh Conjunction Equivalence	at? b) d)	Implication None of these	
	x)	sta a)	A and B are true statements tement $\sim (A \vee X)$ is True	b)	False	s, the compound
		c)	Doubtful	d)	None of these	

- 2. Use truth tables to determine the validity or invalidity of the following arguments any two.
 - $i) \hspace{1cm} N \supset (N \supset O)$

$$N \supset N$$

$$\therefore N \supset O$$

ii) $J \supset (K \cdot L)$

$$J \vee (K \cdot L)$$

$$\therefore K \cdot L$$

iii) $K \supset (L \supset M)$

$$K \supset L$$

$$\therefore \quad K\supset M$$

- 3. Construct a formal proof of validity **any two.**
 - i) $M \supset N$

$$M \supset (N \supset O)$$

$$M \supset O$$

ii) $O \supset (P \supset Q)$

$$P \supset (Q \supset R)$$

$$:$$
 $O \supset (P \supset R)$

iii) $(P \supset Q) \cdot (P \lor R)$

$$(R \supset S) \cdot (R \lor P)$$

$$\therefore \quad Q \vee S$$

- 4. Prove the invalidity of the following by the method of shorter truth table any two.
 - i) $A \supset B$

$$C \supset D$$

$$A\,\vee\, D$$

$$\therefore$$
 B \vee C

ii) $I \vee \sim J$

$$\sim (\sim K \cdot L)$$

$$\sim (\sim I \cdot \sim L)$$

$$\therefore \quad \text{\sim} \ J \supset K$$

iii) $A \equiv (B \vee C)$

$$B \equiv (C \vee A)$$

$$C \equiv (A \vee B)$$

$$\therefore \quad B \vee C$$

- 5. Construct a formal proof of validity **any two.**
 - i) $(x) (Ax \supset \sim Bx)$ $(\exists x) (Cx \cdot Ax)$
 - $\therefore (\exists x) (Cx \cdot \sim Bx)$
 - ii) $(x)(Dx \supset \sim Ex)$
 - $(x) (Fx \supset Ex)$
 - \therefore (x) (Fx $\supset \sim$ Dx)
 - iii) $(\exists x) (Yx \cdot Zx)$
 - $(x)(Zx \supset Ax)$
 - $\therefore (\exists x) (Ax \cdot Yx)$
- **6.** Prove the invalidity of the following **any two.**
 - i) $(\exists x) (Yx \cdot Zx)$
 - $(\exists x) (Ax \cdot Zx)$
 - $\therefore (\exists x) (Ax \cdot \sim Yx)$
 - ii) $(x) (Px \supset \sim Qx)$
 - $(x) (Px \supset \sim Rx)$
 - \therefore (x) (Rx $\supset \sim Qx$)
 - iii) $(\exists x) (Vx \cdot \sim Wx)$
 - $(\exists x) (Wx \cdot \sim Xx)$
 - $\therefore (\exists x) (Xx \cdot \sim Vx)$
- 7. Shorter truth table is more convenient than truth table method.
- **8.** Explain the difference between the method of instantiation and quantification.
- **9.** Discuss the four rules of quantificational deduction.
- **10.** Distinguish between truth functional and non-truth functional statement. Explain the different types of truth functional compound statement.
- **11.** Write short notes on:
 - i) The three laws of thought.
 - ii) Inconsistency.
- **12.** What is definition? Explain the different types of definition?
