M.Tech-Heat Power Engineering / M.Tech-Heat Power Engineering (C.B.C.S.) Pattern Sem I 916 - Advanced Heat and Mass Transfer

P. Pages : 2 Time : Three Hours			* 4 7 5 9 *			GUG/W/16/38 Max. Marks	GUG/W/16/3835 Max. Marks : 70	
	Notes	5: 1. 2. 3. 4. 5. 6. 7.	All questions carry e Answer any five que Due credit will be giv Assume suitable data Retain the construction Illustrate your answe Use of slide rule, Log instruments, Thermo Refrigeration charts a	qual marks. stions. ven to neatnes wherever ne on lines. r wherever ne garithmic table dynamic table and Data hand	ss and adequate dimension cessary. ecessary with the help of n les, Steam tables, Mollier's es for moist air, Psychrom d book is permitted.	eat sketches. chart, Drawing etric charts,		
1.	a)	Write 3- reduce tl Laplace	D heat conduction eq ne general heat condu equation.	uation in Cart ction equation	tesian coordinates specify n in Fourier Equation, pois	the condition & sons equation &	7	
	b)	Two par medium Calculat	allel 50 cm diameter 1 having $K = 2.3 \text{ W/m}^{\circ}$ the heat transfer bet	Discs are sepa °C. One Disc ween the disc	arated by a distance of 1.5 is maintained at 80°C & o cs.	m in an infinite ther at 20°C.	7	
2.	a)	What is conduction shape factor? Explain its significance in the graphical analysis of two dimensional heat conduction problems.						
	b)	Conside Lef exposed compute	T $\infty = 100^{\circ}C$	fig. t 100°C; Top 0°C. h = 10 w mode is indic $\Gamma = 500°C$ 1 2 3 4 5 6 7 8 9 $\infty = 100°C$	face at 500°C. While the c r/m^2 °C; K = 10 w/m °C; B ated in figures & heat flow $1m T \infty = 100°C$	other two faces are lock is $= 1m^2$ w at boundary.	7	
3.	a)	Define I	radiation & Radiosit	у.			7	
	b)	A 5 cm t 225°C su transfer i) Cer	hick Iron plate $[K = 6]$ addenly plate is imme coefficient is 500 w/n atre temp of the plate,	50 w/m°C Cp rsed in fluid 1 n-c calculate. 2 min after tl	= 460 J/kg°C, ρ - 7350 kg media at uniform temp. of he start of cooling.	/m ³] is initially at 20°C surface heat	7	

- ii) Temp. at a depth of 1 cm from the plate surface 2 m after start of cooling.
- iii) Energy removed from the plate per area during these time.

4.	a)	Explain the Reciprocal relation & the properties of shape factor.	7					
	b)	 Two infinitely long parallel planes, one has emissivity of 0.4 & is maintained at 230°C The emissivity of second plane is 0.25 & is maintained at temp. of 30°C. A radiation shield is having emissivity of 0.045 is introduced between the given planes. Find out : i) Heat transfer rate per unit area due to radiation. ii) % reduction in heat transfer rate & steady state temp. attained by radiation 						
		shield.						
5.	a)	What are Peclet & Grashoff's Number. Explain its physical significance.	7					
	b)	Air at 27° & at 1 atm Flows over a flat plate at a speed of 2 m/sec. Calculate the boundary layer thickness at a distance of 20 cm & 40 cm from the leading edge of the plate. Also, calculate the mass flow which enters the boundary layer between $x = 20$ cm & $x = 40$ cm, the viscosity of air at 27°C is 1.85 x 10 ⁻⁵ kg/m.s. Assume unit depth in other direction.						
6.	a)	Define & derive effectiveness the parallel flow heat exchanger.	7					
	b)	 In tabular condenser, steam condenses at atm pressure on the external surface of the tubes. Cooling water is flowing inside the tubes I. D. = 2.5 cm; which is 10 m long & No. of tubes is 10. Water enters at 30°C & leaves at 65°C. If the flow rate of water is 3600 kg/hr. Find Out: i) Rate of steam condensation. ii) Effectiveness of condenser iii) NTU 	7					
7.	a)	Explain the empirical & practical relations for forced convection heat transfer.						
	b)	Define Fick's law of diffusion & show that,						
		$Mw = \frac{DA}{GT} x \frac{Mw Pt}{(x_2 - x_1)} x \frac{P_{w_1} - P_{w_2}}{Pa}$ for isothermal evaporation of water.						
8.		Write short note on any three of following.						
		i) Laws of Radiation						
		ii) Regimes of pool boiling						
		iii) Define Fick's of diffusion & explain diffusion of gases in Liquid & solids.						
		iv) Effect of radiation on temp. measurement.						
		v) Boundary conditions of I, II & III kind.						
