B.E.(with Credits)-Regular-Semester 2012-Civil Engineering Sem VII

BE - Structural Analysis III

P. Pages: 3 GUG/W/16/6531

Time : Four Hours

* 4 7 2 5 *

Max. Marks : 80

- Notes: 1. All questions are compulsory.
 - 2. Answer all questions.
 - 3. Due credit will be given to neatness and adequate dimensions.
 - 4. Assume suitable data wherever necessary.
 - 5. Illustrate your answers wherever necessary with the help of neat sketches.
- 1. Derive the member stiffness matrix for 2 noded beam element with 2 DOF per node.

OR

16

16

- 2. Derive the member stiffness matrix for 2 noded truss element with full DOF.
- 3. Find SFD & BMD for the beam shown below.

4. Find SFD & BMD for the continuous beam shown below. Supp. B sinks by 50/EI m. 16

5. Analyse the frame shown below using direct stiffness method. Supp. D yields by 4 radians clockwise.

OR

6. Find global load vector for frame shown below considering axial deformation. A, E, I is uniform.

16

7. Analyse the frame shown below using direct stiffness method. AE is uniform.

16

 \mathbf{OR}

8.	a)	Explain clearly with example the D'Alemberts principle.	8
9.	b)	Explain linearly elastic & linearly inelastic system with suitable example.	8
	a)	Explain the shape function & its use in FEM.	8
	b)	Explain the interpolation function & its use in FEM with suitable example.	8
		OR	
10.	a)	What are the storage techniques.	8
	b)	Explain the Rayleigh Ritz method to solve the problem of two noded bar element.	8
