M.Tech (with Credits)-Regular-Semester 2012-Heat Power Engineering Sem II MT-1017 - Advanced Refrigeration & Air Conditioning

P. Pages : 2 Time : Three Hours			* 4 6 2 8 * Max. Marks	GUG/W/16/3961 Max. Marks : 70	
	Note	s: 1. 2. 3. 4. 5. 6.	All questions carry equal marks. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary. Illustrate your answers wherever necessary with the help of neat sketches. Use of slide rule, logarithmic tables, Steam tables, Mollier's chart, Drawing instruments, Thermodynamic tables for moist air, Psychrometric charts and Refrigeration charts is permitted. Answer any five questions.		
1.	a)	Explain	various pressure losses in actual VCRS system with p-h & T-S diagram.	6	
	b)	A R-12 vapour condens i) Cc ii) Po iii) Th Use foll Enthalp Sp. Vol Enthalp Enthalp Represe	refrigerating machine working on vapour compression cycle receives saturated at 5°C at the entry to compressor. It is compressed isentropically. Refrigerant is sed at 40°C. Determine : \rightarrow refficient of performance [COP] wer per ton of refrigeration eoretical piston displacement per ton of Refrigerant owing properties of refrigerant : y of refrigerant at compressor Inlet = 189.7 kJ/kg ume of refrigerant at compressor Inlet = 0.049 m ³ /kg y of refrigerant at compressor Exit = 203.2 kJ/kg y of refrigerant at condenser Exit = 74.6 kJ/kg ent the cycle on p-h & T-S diagram.	8	
2.	a)	In an A The vap absorbe respecti solution concent Calcula i) Th ii) Ca de iii) He iv) He v) CO	qua-Ammonia refrigerant absorption system of 9 tonnes refrigeration capacity. Yours leaving the generator are 100% pure NH ₃ , saturated at 40°C. The evaporator, r, condenser & generator temperatures are -20° C, 30° C, 40° C & 70° C vely. At the absorber exit (strong solution) the concentration of Ammonia in is (x-0.38) & the enthalpy is (h = 22 kJ/kg). At the generator exit (weak solution) ration is (x = 0.1) & enthalpy is (h = 695 kJ/kg). te : \rightarrow e mass flow rate of Ammonia in evaporator. rry out overall mass conservation & mass conservation of ammonia in absorber to termine the mass flow rates of weak & strong solution. eat rejection in absorber & condenser. at added in generator. DP.	10	
	b)	Give cla	assification of refrigerants & explain desirable properties of an ideal refrigerant.	4	
3.	a)	Explain	ozone layer depletion & its effects also explain global warming.	7	
	b)	Draw no system	eat sketches of claude system & linde system & also mention advantages of claude over linde system.	7	

4.	a)	Explain with the help of neat sketch domestic Electrolux (Ammonia Hydrogen) Refrigerator.		
	b)	Discuss pulse tube refrigeration system with the help of neat sketch.	7	
5.	a)	A Thermodynamic refrigeration system consists of N-pairs, connected in series. It works under 6-volt solar battery. The hot & cold junctions are maintained at 40°C & 10°C respectively. The properties of thermodynamic materials are $\alpha_p = 0.00016 \text{ v/k} \& \alpha_n = -0.0002 \text{ v/k}$. The resistance & conductance for each pair ar $0.003\Omega(\text{ohm}) \& 0.02 \text{ w/k}$ respectively. Determine : for the cases. i) for max ^m COP. ii) for max ^m cooling, the following a) No. of thermoelectric couples, b) Tonnage (cooling) of the unit, c) Power consumed & d) Compare the COP with carnot value.		
	b)	Discuss in detail Montreal & Kyoto protocols ?	4	
6.	a)	Explain the utility of following simulation softwares in refrigeration.i) Evap - condii) POREZ	6	
	b)	Describe various air distribution devices with neat sketches.		
7.	a)	Explain with the help of neat sketches various losses in ducts & also mention selection of duct.		
	b)	Discuss in detail Retrofitting of domestic refrigerators.		
8.		Write short notes any three.		
		i) Factors considered for heat load calculation.		
		ii) Duct design & classify it.		
		iii) Equipment selection for air conditioning purpose.		
		iv) Eco-Friendly refrigerants.		
		v) Concept of green house effect.		
