B.E.(with Credits)-Regular-Semester 2012 - Mechanical Engineering Sem IV ME405 - Hydraulic Machines

P. Pages : 2 Time : Three Hours		* 4 0 3 9 *	GUG/W/16/3924 Max. Marks : 80
Notes :		All questions carry equal marks. Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q.	8, Q. 9 or Q. 10.

- 3. Assume suitable data wherever necessary.
- 4. Illustrate your answers wherever necessary with the help of neat sketches.
- 5. Use of slide rule, Logarithmic tables, Steam tables, Mollier's chart, Drawing instruments, Thermodynamic tables for moist air, Psychrometric charts and Refrigeration charts is permitted.
- **1.** a) What are the various assumptions made in the derivation of expression for the force exerted by a jet of fluid on a stationary flat plate.
 - b) Show that the angle of swing for a flat plate hinged at the top, when the jet strikes normal 10 to the plate at the centre is given by

$$\sin\theta = \frac{PAV^2}{W}$$

where, $\theta = angle of swing$ P = density of fluid A = area of flat plate V = Velocity of the jetW = Weight of the plate

OR

- a) Derive expressions for The force exerted by the jet of water on a pelton wheel in the direction of the jet, work done per second & the hydraulic efficiency of the pelton wheel.
 - b) Explain the characteristic features of the cup of a pelton wheel. What are the limitations in 5 keeping the deflective angle of the cup as 180°?
- **3.** a) Differentiate clearly between Francis Turbine and Kaplan Turbine.
 - b) The following data refers to the runner of a Kaplan Turbine? Which yields 8850kW at the **9** Turbine shaft:

Net available head	= 5.5 m,
Speed Ratio	= 2.1:1
flow Ratio	= 0.67:1
Overall efficiency	= 85%

Presuming that hub diameter of the wheel is 0.35 times the outside diameter, find the runner diameter and its rotational speed.

OR

4. a) Explain the theory of Draft Tube.

6

6

7

	b)	b) A Francis Turbine develops 365kW at an overall efficiency of 80%, when working und a static head of 5m; the draft tube being cylindrical and of diameter 2.5m. What increases in power and efficiency of the turbine would you expect, if a tapered draft tube having inlet diameter of 4 m and the efficiency of conversion of 90%, is substituted for the cylindrical one. It may be presumed that the head, speed and the discharge remain constant.		
5.	a)	Derive an expression for the specific speed of a Pelton Turbine.	5	
	b)	 A Turbine is to operate under a head of 25 m at 200 rpm. The discharge is 9 m³/s of the turbine efficiency is 90% determine: i) Sp. Speed of the turbine. ii) Power generated iii) Performance under a head of 20m. Also state the type of the turbine. 	11	
		OR		
6.	a)	What is governing of a Turbine?	6	
	b)	Explain the construction and working of governing mechanism of a Reaction Turbine.	10	
7.	a)	How will you classify pumps?	5	
	b)	Derive an expression for the work done by the impeller of a Centrifugal pump on a liquid.	11	
		OR		
8. a)		What do you understand by a positive displacement pump?	4	
	b)	 A single acting reciprocating piston pump running at 50 rpm delivers 7.36 litres/s of water. The diameter of the piston is 20 cm and the stroke is 30 cm. The suction and delivery heads are 3.5 m and 11.5 m respectively. Determine: i) Theoretical Discharge, ii) Coefficient of discharge, iii) Percentage slip of the pump, & iv) Power required to run the pump. 		
9.	a)	Explain the construction and working of a hydraulic Ram.	8	
	b)	Derive an expression for the discharge of a viscous fluid through a gear pump.	8	
		OR		
10.		 Write short notes on any four. a) Air Vessels, b) Specific Quantities, c) Unit Quantities, d) Model Testing of a Centrifugal Pump, e) Air - Lift pump. 	16	

GUG/W/16/3924