B.E. Electronics & Communication Engineering & (Telecom. Eng) Sem IV EN/ET403-Paper-I : Electromagnetic Fields (Elect,x)

P. Pages : 2 Time : Three		e Hours	GUG/W/16/3899 Max. Marks : 80	
	Note	 All questions carry equal marks. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary. 		
1.	a)	Prove that	8	
		i) $\nabla \cdot (\nabla \times A) = 0$ ii) $\nabla \times (\nabla V) = 0$		
	b)	Express the vector field (i) $\overline{w} = (x - y)a\hat{y}$ in cylindrical co-ordinates.	8	
		ii) Give the field \overline{F} in Cartesian co-ordinates if $\overline{F} = \rho \cos \phi a \hat{\rho}$.		
		OR		
2.	a)	For a vector field $\overline{A} = 30e^{-\rho}a_{\hat{\rho}} - 2za_{\hat{z}}^2$, determine if the field is solenoidal at	P(2,30°,5) 8	
	b)	The vector \overline{R}_{AB} extends from point A(1,2,3) to B. If the length of \overline{R}_{AB} is 10 its direction is given by $\hat{a} = 0.6a_{\hat{x}} + 0.64a_{\hat{y}} + 0.48a_{\hat{z}}$, find co-ordinates of Poin	units and 8 t B.	
3.	a)	In free space line charge $\rho_L = 100 \text{ nc/m}$ lines on entire z axis while a point charse at P (2,0,0). Find \overline{E} at (a) (3,1,0) (b) (4,3,2).	rge 100 nc 8	
	b)	Derive electric field intensity due to infinite uniform sheet of charge density ρ_{i}	$s_{s}^{c}c/m^{2}$. 8	
		OR		
4.	a)	Three infinite uniform sheets of charge are located in free space as follows 3 nd $Z = -4$, 6 nc/m^2 at $Z = 1$, and -8 nc/m^2 at $Z = 4$ find \overline{E} at the point. (i) $P_A(2, 5, -5)$ (ii) $P_B(4, 2, -3)$ (iii) $P_C(-1, -5, 2)$	2/m ² at 8	
	b)	State and Prove Divergence theorem.	8	
5.		Given the flux density $\overline{D} = \frac{2\cos\theta}{r^3} a_{\hat{r}} + \frac{\sin\theta}{r^3} a_{\hat{\theta}} c/m^2$. Evaluate both sides of	.f 16	
		divergence theorem for the region defined by $1 < r < 2$, $0 < \theta < \frac{\pi}{2}$, $0 < \phi < \theta$	$\frac{\pi}{2}$.	
		OR		
6.	a)	Derive Magnetic field intensity due to an infinite filament carrying current I in	it. 8	

- b) Evaluate both sides of stokes theorem for the field $\overline{H} = 6xya_{\hat{x}} 3y^2 a_{\hat{y}} A/m$ and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, z = 0 Let the positive direction of $d\overline{s}$ be $a_{\hat{z}}$.
- 7. a) Write Maxwells equation for static and time varying field.
 - b) Find the amplitude of displacement current density.
 - i) adjacent to an automobile antenna where magnetic field intensity of an FM signal is $H_X = 0.15 \cos [3.12 (3 \times 10^8 t - y)] \text{ A/m}$
 - ii) In the air space at a point within a large power distribution transformer where $\overline{B} = 0.8 \cos \left[1.257 \times 10^{-6} (3 \times 10^8 t x) \right] a_{\hat{V}} T.$

OR

- **8.** a) State and prove uniqueness theorem.
 - b) Derive continuity equation for time varying field.
- 9. a) A material for which $\in_r = 1.5$, $\mu_r = 1$ has conductivity σ Let $\overline{E} = 60 \cos(10^5 t) a_{\hat{X}} v/m$ Find (i) J_c (ii) J_d (c) the conductivity for which the displacement current density and conduction current have equal amplitudes.
 - b) Derive wave equation for time varying field.

OR

The frequency

The amplitude and direction of \overline{E} .

10. a) The magnetic field intensity of a uniform plane wave in air is 20 A/m in $a_{\hat{y}}$ direction. The **8** wave is propagating in $a_{\hat{z}}$ direction at a frequency of 2 G rad/sec. Find

ii)

iv)

- i) Wavelength
- iii) The period
- b) Write short notes on:
 - i) Snells law.
 - ii) Brewster angle
 - iii) Stair effect

8

8

8

8

8

8

8