B.E.-Computer Science and Engineering Sem IV CS 402 - DCFM (Digital Circuits & Fundamentals of Microprocessor)

P. Pages : 2 Time : Three Hours				GUG/W/16/3879 Max. Marks : 80	
	Note	es: 1. 2. 3.	All questions carry equal marks. Retain the construction lines. Illustrate your answers wherever necessary with the help of neat sketche	:8.	
1.	a)		nd prove De morgan's laws of Boolean algebra. What are the steps follower on of boolean expression?	ed in 8	
	b)		re SOP and POS farms of boolean expression? How do you convert an SO rm and vice-versa?	OP to 8	
			OR		
2	a)		the following expression using kmap : \Rightarrow , C, D)= Σ m(0,3,6,7,9,12,14)+d(4,8)	8	
	b)	-	how will you use NAND gate as an universal gate. Realise $Y = A + BC\overline{L}$ and gates only.	Dusing 2 8	
3.	a)	What d	o you mean by cascading of parallel adder? Why is it requited?	8	
	b)	Design	4 bit binary to excess – 3 code converter.	8	
			OR		
4.	a)	i) Ri	describe the following. pple carry adder pok-ahead carry adder	8	
	b)	What is 1:4 dem	s a demultiplexer. Explain the working principle of demultiplexer with the nux.	help of 8	
5.	a)		s meant by stable state? What do you mean by a latch and a gated latch? E o flop in detail by giving excitation table.	xplain 8	
	b)	What is	s a random access memory [RAM] Explain the different types of RAM.	8	
			OR		
6.	a)	Explain	the working of a bidirectional shift register with a neat diagram.	8	
	b)	remaini	a MOD-5 synchronous counter with sequence $S_2 \rightarrow S_4 \rightarrow S_6 \rightarrow S_7$ ing states locked to state S_2 this counter has a control line M, it M = O the a down counter and is M = 1 counter acts as up counter draw truth table a	en counter	

diagram neatly.

7. Explain in detail the functions of following registers of µp 8085 in detail. a)

- i) Program counter.
- ii) Stack pointer.
- b) What do you understand by the term addressing modes? Give the status of flags and 8 addressing modes and T-states required for the following instructions.

8

- JMP 2000H INR M i) ii) iii) PUSH Rp
 - iv) **XTHL**

OR

8.	a)	Write an assembly language program to find square of a given number.	8
	b)	What are the various instructions for data transfer in microprocessor 8085.	8
9.	a)	Give the difference between IO mapped IO ports and memory mapped IO ports.	8
	b)	Write a sequence of instructions that enables RST 6.5 and RST 7.5 and disable RST 5.5 interrupts of µp 8085	8
10.	a)	Explain the Handshaking mode of 8255 PPI.	8

Draw the format of IO mode of 8255 PPI and explain in detail importance of each bit. b) 8
