B.E.(with Credits)-Regular-Semester 2012- All Branches Sem I & II 101 - Applied Mathematics-II

P. Pages : 2 Time : Three H		2 ree Hour	s * 3 9 9 5 *	GUG/W/16/3672 Max. Marks : 80
	Note	s: 1. 2.	All questions carry equal marks. Use of non programmable calculator is permitted.	
1.	a)	Solve	$\frac{dy}{dx} + \frac{1}{x}\tan y = \frac{1}{x^2}\tan y \sin y$	5
	b)	Solve :	$\left[\cos x \log(2y-8) + \frac{1}{x}\right] dx + \frac{\sin x}{y-4} dy = 0$	4
	c)	Solve :	$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y\cos(e^x)$	7
			OR	
2.	a)	Solve :	$\frac{dy}{dx} = \frac{y+1}{(y+2)e^y - x}$	5
	b)	Solve :	$(\sec x \tan x + \tan y - e^x)dx + \sec x \sec^2 y dy = 0$	4
	c)	Solve b	by variation of parameters $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x} \log x$	7
3.	a)	Solve :	$\frac{d^2y}{dx^2} + 4y = x\sin x + \cos^2 x$	8
	b)	Solve :	$x^{3}\frac{d^{3}y}{dx^{3}} + 3x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + y = x + \log x$	8
			OR	
4.	a)	Solve :	$\frac{d^2y}{dx^2} = 2(y^3 + y)$ under the condition $y = 0$, $\frac{dy}{dx} = 1$ when $x = 0$.	8
	b)	Solve :	$\frac{dx}{dt} + 3x - 2y = 1$	8
		given x	$\frac{dy}{dt} - 2x + 3y = e^t$ t = y = 0 at t = 0.	

5. a) Evaluate $\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{0}^{\left(\frac{a^2 - r^2}{a}\right)} r \, dr \, d\theta \, dz$

b)

Evaluate by changing the order of integration $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$

OR

6.	a)	Find the centre of gravity of the area bounded by parabola $y^2 = x$ and line $x + y = 2$.	8
	b)	Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$ and $z = 0$.	8
7.	a)	A particle moves along the curve $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is time. Determine its velocity and acceleration vectors. Also the magnitudes of velocity and acceleration at $t = 0$.	5
	b)	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, 2, -1) in the direction of $2i - j - 2k$.	6
	c)	Find the angle between the tangents to the curve $\vec{r} = t^2\hat{i} - 2t\hat{j} + t^3\hat{k}$ at points t=1 and t=2.	5
		OR	
8.	a)	The position vector of a point at time 't' is given by $\vec{r} = e^t \cos t\hat{i} + e^t \sin t\hat{j}$ then show that $\vec{a} = 2(\vec{v} - \vec{r})$.	4
	b)	Find the value of a, b, c so that the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at point (1, 2, -1) has a maximum magnitude 64 in the direction parallel to z axis.	8
	c)	If $\vec{a} = t^2 \hat{i} - t \hat{j} + (2t+1)\hat{k}$, $\vec{b} = 2t\hat{i} + \hat{j} - t\hat{k}$ then find $\frac{d}{dt}(\vec{a} \times \vec{b})$.	4
9.	a)	Find the value of n for which vector field $r^n \bar{r}$ is solenoidal. Also show that $r^n \bar{r}$ is conservative vector field.	8
	b)	If $\vec{F} = (y \sin z - \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy \cos z + y^2)\hat{k}$ then show that \vec{F} is a irrotional. Hence find its scalar potential.	8
		OR	
10.	a)	Evaluate by Gauss Divergence theorem $\iint (x\hat{i} - y\hat{j} + z^2\hat{k}) \cdot \hat{n} dS$ where S is the closed	8
		surface bounded by the cone $x^2 + y^2 = z^2$ and the plane $z = 1$.	
	b)	Evaluate $\int \vec{E} d\vec{r}$ by Stabula theorem where $\vec{E} = -2\hat{i} + -2\hat{i}$ ($r + -)\hat{i}$ where G is the	8

Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ by Stoke's theorem where $\vec{F} = y^2 \hat{i} + x^2 \hat{j} - (x+z)\hat{k}$ where C is the boundary of the triangles with the vertices (0, 0, 0), (1, 0, 0) and (1, 1, 0).

8

8