B.E.(with Credits)-Regular-Semester 2012-Civil Engineering Sem V

CE506 - Surveying-II

1.1 ugcs. 2		GCG/W/10/3002
T' Tl II		M M1 00
Time: Three Hours	+ 3 9 / 7 +	Max. Marks: 80

Notes: 1. All questions carry equal marks.

D Dogge . 2

- 2. Assume suitable data wherever necessary.
- 3. Illustrate your answers wherever necessary with the help of neat sketches.
- 4. Use of nonprogrammable calculator is allowed.
- **1.** a) Explain the theory of stadia tacheometry.

6

10

CUC/W/16/3682

b) A tacheometer was set up at a stⁿ C and the following readings were obtained on a staff vertically held.

Inst. St ⁿ	Staff St ⁿ .	Vertical Angle	Hair Reading	Remark RL of
		_	_	B.M. = 750.50 M
С	B.M.	- 5° 20'	1.150, 1.800, 2.450	
С	D	+8° 12'	0.750, 1.500, 2.250	

Calculate the horizontal distance. CD and RL of D, when the constants of instrument are 100 and 0.15.

OR

2. a) Discuss the methods of tacheometry.

6

b) The following observations were taken with a tacheometer fitted with an anallatic lens, the staff being held vertically. The constant of the tacheometer is 100.

Inst. St ⁿ	Height of	Staff St ⁿ .	Vertical	Staff Reading	Remark
	Instrument		Angle		
P	1.255	B.M.	-4° 20'	1.325, 1.825, 2.325	R.L of B.M
					= 255.750 M
P	1.255	A	+6° 30'	0.850, 1.600, 2.350	
В	1.450	A	- 7° 24'	1.715, 2.315, 2.915	

Calculate the RL of B and the distance between A and B.

- 3. a) The probable error of direction measurement is 1.25 seconds. Compute the maximum value of R if the maximum probable error desire is
 - a) 1 in 25000 and

- b) 1 in 10000
- b) What is meant by a satellite Stⁿ and reduction to centre?

5

8

c) Explain tape correction for Temperature.

3

OR

4. a) A steel tape 20m long standardised at 55°F with a pull of 10 kg was used for measuring a base line. Find the correction per tape length, if the temperature of the time of measurement was 80°F and the pull exerted was 16 kg weight of 1 cubic cm of steel = 7.86 g, wt of tape = 0.80 kg and E = 2.109x10⁶ kg/cm². Coefficient of expansion of tape per 1°F = 6.2x10⁻⁶.

	b)	Explain how you would extend a base line.	5
	c)	Explain Geodetic surveying.	5
5.	a)	Derive a relation between the radius and degree of curve.	4
	b)	Two tangents AB and BC intersect at B. Another line DE intersects AB and BC at D and E such that \angle ADE = 150° and \angle DEC = 140°. The radius of the first curve is 200M and that of second is 300M. Chainage of B is 950M. Calculate all data necessary for setting out the compound curve.	12
		OR	
6.	a)	Derive an expression for an ideal transition curve.	8
	b)	What are vertical curves explain its importance in highway.	8
7.	a)	Define following astronomical terms.	8
		a) Celestial sphere.	
		b) Zenith and Nadir.	
	b)	State and explain lands of weight.	8
		OR	
8.	a)	The standard meridian time in India is 82° 30′E. Find the local mean time of the places having longitudes. If standard mean time at any instant is 18° 20′E for @25°E and 25°W.	10
	b)	Explain theory of least squares.	6
9.	a)	Explain equilibrium theory.	8
	b)	Write short notes on:	8
		a) Sounding machine.	
		b) Fathometer.	
		OR	
10.	a)	A camera having focal length of 200MM is to be used to take a vertical photograph of a terrain having an average elevation of 2000 M at what height above datum the air craft should fly to have photograph to a scale of 1:5000.	8
	b)	Derive an expression to calculate focal length of a photo theodolite with a neat sketch.	8
