B.E.(with Credits)-Regular-Semester 2012-Mining Engineering Sem III

MN303 - Fluid Mechanics

P. Pages: 2

Time: Three Hours

Max. Marks: 80

- Notes: 1.
 - 1. All questions carry equal marks.
 - 2. Solve all questions.
 - 3. Due credit will be given to neatness and adequate dimensions.
 - 4. Assume suitable data wherever necessary.
 - 5. Diagrams and Chemical equations should be given wherever necessary.
 - 6. Illustrate your answers wherever necessary with the help of neat sketches.
 - 7. Use of slide rule, Logarithmic tables, Steam tables, Mollier's chart, Drawing instruments, Thermodyanmic tables for moist air, Psychrometric charts and Refrigeration charts is permitted.
 - 8. I.S.I. Hand book for structural steel section, I.S. code 800/1962 or 1964, I.S. 456 (Revised) I.S. 875 may be consulted.
- **1.** a) Define Newton's law viscosity. Explain the Newtonian & non-Newtonian fluid with Rheological diagram.
 - . & 8

8

b) Determine the capillarity in a glass tube of 2 mm diameter when immersed in water & mercury. The surface tension for water & mercury are 0.072 N/m & 0.52 N/m respectively. Assume specific gravity of mercury as 13.6.

OR

- 2. a) A cylindrical block of diameter 0.2 m is placed over an inclined plane such that it length is perpendicular to the plane. The weight of the block is 500 N & inclination of a plane is 45° with the horizontal. The sliding velocity is 0.4 m/sec downwards. There is a lubricant between the block & the plane, whose viscosity is 12.6 poise. Determine the thickness of lubricant is millimeter.
 - b) Define total pressure & centre of pressure. What is their significance ? Give some engineering examples.

6

6

- **3.** a) Differentiate the following:
 - i) Dynamic viscosity & kinematic viscosity
 - ii) Gauge pressure & absolute pressure.
 - b) The velocity components in two dimensional flow field for an incompressible fluid are expressed as:

$$u = \frac{y^3}{3} + 2x - x^2y$$

$$v = xy^2 - 2y - \frac{x^3}{3}$$

Obtain an expression for velocity potential function (ϕ) & stream function (x)

OR

4.	a)	Distinguish between: i) Uniform flow & non-uniform flow. ii) Rotational flow & Irrotational flow.	6
	b)	Check if the function $\phi = x^2 - y^2 + y$ represents the velocity potential for two dimensional irrotational flow & determine the corresponding steam function.	10
5.	a)	List out various forces influencing motion. Derive Euler's equation of motion & integrate it to obtain Bernoulli's equation. State the assumption made therein.	8
	b)	Derive continuity equation in Cartesian co-ordinate form.	8
		OR	
6.	a)	Water flows down an inclined tapering pipe 45 meter long at a slope of 1 in 10. The areas at the upper & lower ends of the pipe are 8 m ² & 3 m ² respectively. If the velocity at the lower end is 4.5 m/sec & pressure at the upper end is 100 kPa, calculate the pressure at the lower end & rate of flow through the pipe, Ignore energy losses.	6
	b)	What is meant by "Vena Contracta" explain why it is formed.	10
7.	a)	Derive the Euler's equation of motion for one dimensional fluid flow & explain Bernoulli's equations for ideal & real fluid alongwith its mathematical expression.	10
	b)	Explain working principle of orificemeter with neat sketch.	6
		OR	
8.	a)	Differentiate between centrifugal & reciprocating pump.	6
	b)	A centrifugal pump has an impeller with 25 cm inner diameter of 50 cm outer diameter. When running at 600 r.p.m. discharge water at the rate of 8 m³/min. against head of 8.5 m. The water enter impeller without whirl & shock. Vanes are set at outlet at an angle of 45° & area of flow of impeller is 0.06 m². Determine: i) The manometric efficiency of pump & ii) An inlet vane angle.	10
9.	a)	Define the coefficient of discharge, % slip & negative slip of reciprocating pump.	8
	b)	Explain the working of air lift pump with its merits & demerits.	8
		OR	
10.		Write short notes on:	
		i) Cavitation, its effect & prevention.	5
		ii) Maintenance of pump.	5
		iii) Main component parts of centrifugal pump.	6
