B.E.(with Credits)-Regular-Semester 2012-Information Technology Sem III IT 303 - Basic Electronics

	ages : ne : Th	: 4 hree Hours $x_{3} = 2 + 1 + 3$	GUG/W/16/3771 Max. Marks : 80
	Not	tes : 1. All questions carry marks as indicated.2. Illustrate your answers wherever necessary with the help of n	eat sketches.
1.	a)	Explain with neat circuit diagram how the Zener diode used as a regul	ator. 6
	b)	In the figure shown. fig 1(b), if Vin = 25V, $R_1 = 1 \text{ K}\Omega$, $Vz = 9 \text{ V}$. Find by Zener when,	d power dissipated 6
		i) $R_L = 1K\Omega$ ii) $R_L = 10K\Omega$	
		$V_{in} \xrightarrow{+} I$ $Fig. 1 (b)$	
	c)	Write difference between Normal diode and Zener diode explain with chara.	the help of their 4

OR

- 2. a) Draw and explain circuit of center tapped full wave rectifier circuit & derive expression 8 for I_{rms} , I_{dc} , η , TUF, PIV of each diode.
 - b) State and prove clamping circuit theorem.
 - c) For the circuit shown in fig. Q. 2 (c) sinusoidal signal $Vi = 50 \sin \omega t$ is applied as input the diodes are ideal. Plot transfer characteristics.

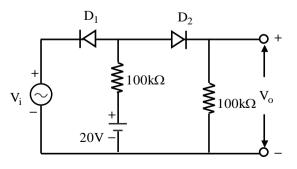
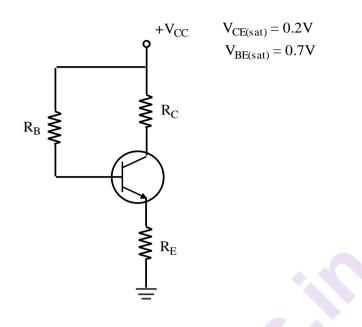


Fig Q. 2 (c)

4


3. a) For the transistor circuit shown in fig. below, $V_{CC} = 10V$, $R_C = 2 K\Omega$, $R_B = 100 K\Omega \& R_E = 1.5 K\Omega$. Determine the transistor current. Show that transistor is in saturation if $\beta_{dc} = 100$.

8

2

6

2

- b) What is reach through in transistor.
- c) Explain input and output characteristics of C B configuration of transistor. Mention different operating regions of transistor on characteristics.

OR

- a) Explain the principle of operation of emitter bias arrangement. Derive the expression for S 8 & state how stability factor can be improved.
 - b) Explain in detail Drain characteristics and transfer characteristics of n channel JFET. **8** For an n – channel JFET, $V_P = -5V$, $I_{DSS} = 8$ mA & $V_{as} = -2.5$ V. Determine
 - i) I_D
 - ii) g_{mo}
 - iii) g_m
- 5. a) Explain why oscillator needs positive feedback? 4
 b) Explain the operation and working of wien bridge oscillator also derive the necessary equation for oscillation. 10
 - c) Explain Barkhausen's criterion of oscillator.

OR

6. a) Draw and explain circuit of class – B push - pull power amplifier. Obtain expression for 8 its conversion efficiency.

GUG/W/16/3771

b) Design single ended transformer coupled class – A power amplifier shown in fig. Q. 6 (b) 8 to deliver a power of 150 mW of audio power into a load of 3 Ω . The quiescent base current is adjusted so that $V_m = V_{cc}$. The supply voltage $V_{cc} = 18$ V. The collector dissipation should not exceed 250 mW.

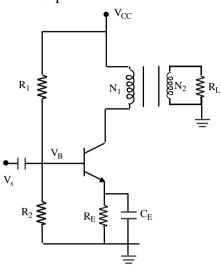
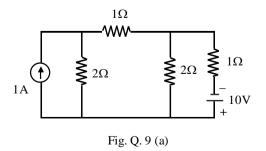
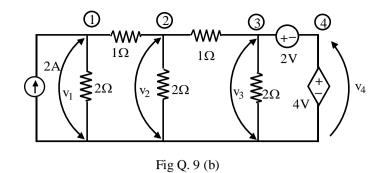
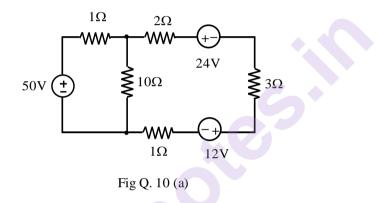



Fig. Q. 6 (b) Transformer – coupled amplifier

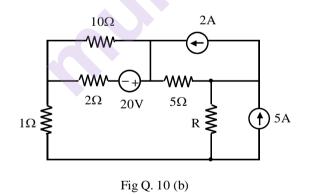

- 7. a) Explain with suitable diagrams and equation the following parameters of op amp.
 i) Input offset voltage
 ii) Input offset current
 iii) CMRR
 iv) Slew rate
 - b) Explain the concept of "Virtual Ground" for op amps and derive expression, for closed 4 loop gain of inverting configuration of op amp.
 - c) An op amp has a differential gain of 80 dB and CMRR of 95 dB. If $V_1 = 2 \mu V \& V_2 = 1.6 \mu V$. Then calculate differential and common mode output values (V₀). 4

OR

- 8. a) Describe working of Schmitt trigger with neat circuit diagram. Determine values of R_1 8 and R_2 . The supply voltages are $\pm 15 V$ & range of hysteresis is 5V.
 - b) Explain working of a monostable multivibrator using an op amp. Derive expression for 8 its pulse width & Draw the waveforms.
- 9. a) Using mesh analysis, obtain current through 10 V battery for circuit shown in fig.



8



OR

10. a) Find current in 10 Ω resistor in circuit of fig. shown below using the venins theorem. What **8** is the power loss in that resistor?

b) What is amount of maximum power transfer to R in the circuit shown below

8