B.E.(with Credits)-Regular-Semester 2012 - Instrumentation Engineering Sem VI IN605 - Digital Signal Processing

P. Pa Time	ages : e : Thr	2 ee Hours	★ 3 5 5 8 ★ Max. Marks	GUG/W/16/5389 Max. Marks : 80	
	Note	s: 1. 2. 3. 4.	Same answer book must be used for each section. All questions carry marks as indicated. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary.		
1.	a)	Write at	least six advantages and mention application of DSP.	6	
	b)	Explain	any five properties of z transform.	10	
			OR		
2.	a)	State an	d prove the circular convolution property of DFT.	4	
	b)	Given x	(n)={0,1,2,3,4,5,6,7} find x(k) using DIT FFT algorithm.	8	
	c)	Comput	the the DFTs of the sequence $x(n) = \cos \frac{n\pi}{2}$ where, N=4, using DIF FFT algorithm.	4	
3.	a)	Sketch trealizati samples $H\left(\frac{2\pi k}{3_2}\right)$	the block diagram for the direct form realization and the frequency sampling on of the M=32, $\alpha = 0$; linear phase (symmetric) FIR filter which has frequency	6	
	b)	Give the FIR filte	ree stage lattice filter with coefficients $k_1 = \frac{1}{4}, k_2 = \frac{1}{2}, k_3 = \frac{1}{3}$. Determine the er coefficients for the direct form structure.	5	
	c)	Determine $H(z) = $	The the lattice coefficient corresponding to the FIR filter. With system function. $A_3(z) = 1 + \frac{13}{24} Z^{-1} + \frac{5}{8} Z^{-2} + \frac{1}{3} Z^{-3}$	5	
			OR		

4. a) Draw a signal flow graph to implement the following system i) Parallel form $y(n) = y(n-1) - \frac{1}{2}y(n-2) + x(n) - x(n-1) + x(n-2)$ 8

b) Obtain the i) direct form - I & ii) direct form - II realization for the following system. y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2) 5. a) A low pass filter has the desired response as given below.

$$H_d \left(e^{j\omega} \right) = \begin{cases} e^{-j3w} & 0 \le \omega < \pi/2 \\ 0 & \pi/2 \le \omega \le \pi \end{cases}$$

Determine the filter coefficients h(n) for M=7 using Type - I frequency sampling technique.

b) Design an FIR digital filter to approximate an ideal low pass filter with passband gain of unity, cut- off frequency of 850 Hz and working at a sampling frequency of $f_S = 5000$ Hz. The length of the impulse response should be 5. Use rectangular window.

OR

- 6. a) Design a high pass filter using Hamming window with a cut-off frequency of 1.2 rad/sec 10 and N=9.
 - b) Compare design methods for linear phase FIR filters.
- 7. a) Determine H(z) using the impulse invariant technique for the analog system function. 10 $H(s) = \frac{1}{(S+0.5)(S^2+0.5S+2)}$

b) Obtain H(z) using bilinear transformation if H(s) = $\frac{1}{(S+1)^2}$ and T=0.15.

OR

8. a) A digital low pass filter is required to meet the following specification. 10 Pass-band ripple ≤ 1 dB Pass band edge = 4 kHz Stop- band attenuation ≥ 30 dB Stop- band edge = 6 kHz Sampling rate = 24 kHz Design the filter by performing a bilinear transformation on an analog system function. Use Butterworth approximation.

		OR	
	b)	Explain the Lagrange's interpolation algorithm.	8
9.	a)	Discuss Up- sampler and Down sampler in brief.	8
	b)	Explain advantages of FIR filters over IIR filter.	6

10. a) Discuss at least two applications is multirate digital signal processing.
8
b) Describe how DSP is useful for speech application.
8

8

6

6