(Time: 3 Hrs) Marks: 80

5

5

10

10

10

- N.B.: 1. Question no. 1 is **compulsory**.
 - 2. Solve any **Three** questions out of remaining **Five** questions.
- Qu-1 Attempt any **FOUR** of the following.
 - a) **Demonstrate/outline** the working of Roulette-wheel selection.
 - b) A single-layer neural network has the weights $w = [0.2 \ 0.5 \ 0.66 \ 0.45]$ with bias b=0.3. It is given an input of $I = [0.5 \ 0.8 \ 0.1 \ 0.36]$.

Find/estimate the output if the sigmoidal activation function is used (slope = 0.3)

- c) **Demonstrate/Outline** the excluded middle axioms, extended for fuzzy sets.
- d) How do genetic Algorithms differ from conventional optimization algorithms?
- Let us consider the discrete fuzzy set $A = \left\{ \frac{1}{a} + \frac{0.9}{b} + \frac{0.6}{c} + \frac{0.3}{d} + \frac{0.01}{e} + \frac{0}{f} \right\}$ using Zadeh's notation, defined on universe $X = \{a, b, c, d, e, f\}$.

 Compute/Infer λ cut for: a) $\lambda = 0.9$ b) $\lambda = 0.3$
- Qu-2 a) Using Mamdani fuzzy model design a fuzzy logic controller to determine the wash time of a domestic washing machine. Assume that the inputs are dirt and grease on cloths. Use three descriptors for each input variables and five descriptors for the output variable. Derive a set of rules for control action and defuzzification. The design should be supported by figures wherever possible. Show/Defend that if the clothes are soiled to a larger degree the wash time will be more and vice-versa.
 - b) Explain McCulloch Pitts neuron model with example.
- Qu-3 a) Determine the weights after one iteration for Hebbian learning of a single neuron network starting with initial weights w = [1 -1]. The inputs are X₁ = [1 -2], X2 = [2 3], X₃ = [1, -1] and learning rate c=1.
 - a) Use Bipolar Binary activation function.
 - b) Use Bipolar continuous activation function.
 - b) What are Neuro-Fuzzy Systems? Explain the steps in Neuro-Fuzzy Hybrid System.
- Qu-4 a) What is Linear Separability? Explain with example why single layer perceptron is not capable of solving Linearly Inseparable problems.
 - b) Using the binary input/output row matrix shown in table-1 train a hetero-associative network to store the input row vectors $s = \{s1, s2, s3, s4\}$ to the output row vector $t = \{t1, t2\}$. Obtain/predict the final weight matrix

Table-1: Input row vectors {s1, s2, s3, s4} and output row vector {t1, t2}.

	s1	s2	s3	s4	t1	t2
1 st	1	0	0	0	1	0
2^{nd}	1	1	0	0	1	0
3 rd	0	0	0	1	0	1
4 th	0	0	1	1	0	1

68990

20

10

- Qu-5 Consider a 2-2-2 three-layer network as shown in figure-1. Perform calculations (upto 4 decimal places) assuming back-propagation learning for one iteration on the input, and desired output patterns given in Table-2.
 - a) Learning rate $\eta = 0.8$, Momentum $\alpha = 0.8$ and Sigmoidal activation function. Table-2: Input-Output pattern.

Pattern Index	Input		Output/desired		
	X1	X2 &	01	O2	
1	0.5	-0.5	0.9	0.1	

Figure-1: The MLP with initial weights

- Qu-6 a) Describe Genetic Algorithms considering: Encoding, Selection, Crossover, Mutation, and Stopping Condition for Genetic Algorithms.
 - b) Let R and S be two fuzzy relations defined as:

$$R = \begin{array}{ccccc} y1 & y2 & y3 \\ 0.0 & 0.2 & 0.8 \\ 0.3 & 0.6 & 1.0 \end{array} \hspace{0.2cm} S = \begin{array}{ccccc} z1 & z2 & z3 \\ y1 & 0.3 & 0.7 & 1.0 \\ 0.5 & 1.0 & 0.6 \\ 1.0 & 0.2 & 0.0 \end{array}$$

- a) Compute/Infer the result of R°S using max-min composition.
- b) Compute/Infer the result of R · S using max-product composition.

73407