University of Mumbai Examination May 2022

Examinations Commencing from 17th May 2022

Program: **Information Technology** Curriculum Scheme: Rev 2019 Examination: SE Semester IV

Course Code: ITC404 and Course Name: AUTOMATA THEORY

Time: 2:30 hours Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks 20M
1.	Transition function of any automata defines
Option A:	$\Sigma * Q \rightarrow \Sigma$
Option B:	$Q * \Sigma \rightarrow \Sigma$
Option C:	$\Sigma * \Sigma \rightarrow Q$
Option D:	$Q * \Sigma \rightarrow Q$
2.	What is the correct form of production in Chomsky's Normal Form?
Option A:	$S \rightarrow aS$
Option B:	$S \rightarrow AB$
Option C:	$S \rightarrow Sa$
Option D:	$S \rightarrow A$
3.	Which of the following is a regular expression for binary strings with no consecutive 1's?
Option A:	(01+10)*
Option B:	$(1+\lambda) (01+0)*$
Option C:	$(0+1)*(0+\lambda)$
Option D:	$(10+0)*(1+\lambda)*$

4.	q_1 q_2
Option A:	Given DFA is for binary numbers divisible 2
Option B:	Given DFA is for binary numbers divisible 3
Option C:	Given DFA is for binary numbers divisible 4
Option D:	Given DFA is for every 0 followed by 1
5.	q_0
Option A:	Given DFA is for strings with the same first and last symbol
Option B:	Given NFA is for strings with the same first and last symbol
Option C:	Given NFA is for strings for searching the keyword "aba" or "bab"
Option D:	Given NFA is for strings with any combination of a's and b's
6.	$S \rightarrow 1S / 01 S$ $S \rightarrow 0A$ $A \rightarrow 0B$ $B \rightarrow 1B / 10B / \lambda$
Option A:	The regular expression for above grammar is $(1 + 01)*00(\lambda + 0)*$
Option B:	The regular expression for above grammar is (1 + 01)*00(1 + 10)*
Option C:	The regular expression for above grammar is (1 + 01)*)000(1 + 10)*
Option D:	The regular expression for above grammar is (0 + 01)*0(1 + 01)*

7.	The grammar for the language where a's followed by twice as many b 's, i.e, a^nb^{2n} Where $n \ge 1$.
Option A:	S → aSbb b
Option B:	S → aSbb
Option C:	S → aSbb λ
Option D:	S → aSbb ab
8.	What is the language of Finite Automata ?
Option A:	Recursive sensitive Language
Option B:	Regular Language
Option C:	Context Sensitive Languages
Option D:	Context free Language
9.	Theis a programmable machine that can compute anything that is computable
Option A:	Deterministic Finite Automata
Option B:	Non Deterministic Finite Automata
Option C:	Universal Turing Machine
Option D:	Push down Automata
10.	Which of the following relates to the Chomsky hierarchy?
Option A:	Regular <cfl<csl<unrestricted< td=""></cfl<csl<unrestricted<>
Option B:	CFL <csl<unrestricted<regular< td=""></csl<unrestricted<regular<>
Option C:	CSL <unrestricted<cf<regular< td=""></unrestricted<cf<regular<>
Option D:	CSL <unrestricted< regular<cf<="" td=""></unrestricted<>

Q2.	Solve any Four questions out of Six. 5 marks each
A	Convert given NFA to DFA q_1 q_0 q_2 q_3 q_4
В	Construct only a Mealy machine for the following: For input from, Σ^* , where $\Sigma = (0,1)$, if the input ends in '101', the output should be 'x'; if the input ends in '110', output should be 'y' otherwise output should be 'z'. (transition table and diagram both are expected)
С	Give Regular Expressions for i) For all strings over 0,1 that starts with 10 and ends with 01 ii) For all strings over a,b which contains exactly 3 occurrence of ' b ' over $\Sigma = \{a,b\}$
D	Consider the following CFG: G = { (S, A), (a, b), P, S}, where P consists of: S→aAS a A→SbA SS ba Derive the string 'aabbaa' using leftmost derivation and rightmost derivation.
Е	Compare and Contrast between FA, PDA and TM
F	what is Ambiguous Grammar, find if the following grammar is ambiguous or not by generating $(x + 2.0) * y / (z - 6.0)$ $S \rightarrow S + S$ $S \rightarrow S * S$ $S \rightarrow S - S$ $S \rightarrow S / S$ $S \rightarrow (S)$ $S \rightarrow \text{variable} \text{constant}$

Q3.	Solve any Two Questions out of Three 10 marks each
A	What are steps for converting CFG to CNF? Convert the given grammar G to CNF. G:
	$S \rightarrow a \mid aA \mid B \mid C$
	$A \rightarrow aB \mid \epsilon$
	$B \rightarrow Aa$
	$C \rightarrow aCD \mid a$
	$\mathbf{D} o \mathbf{d}\mathbf{d}\mathbf{d}$
В	Give a formal definition of Turing Machine (TM). Design a TM that performs the addition of two unary numbers. (transition table and diagram both are expected)
С	Design PDA for for odd length palindrome, let $\Sigma = \{0,1\}$, L= $\{W X W^R \}$
Q.4	Solve any Two Questions out of Three 10 marks each
A	Explain Chomsky's Hierarchy with neat diagram
В	Construct DFA for given regular expression (a+b)* aba (a+b)*
С	Construct NFA with E moves for "Zero or more number of 0's followed by zero or more number of 1's followed by zero or more number of 2's . convert this to DFA.