(3 Hours) Marks : 80

Note:

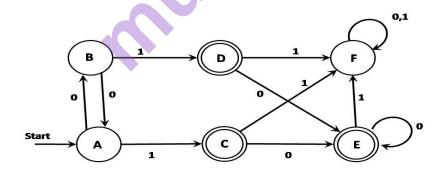
- 1. Question No.1 is compulsory.
- 2. Attempt any three question form reaming question.
- 3. Draw suitable diagram whenever necessary.

Q.1:

- a) Construct NFA for accepting the set of all strings over the input $\Sigma = \{0,1\}$, whose second last symbol is 1 (05)
- b) State and explain limitations and power of Finite Automata. (05)
- c) Design a Moore machine for binary number divisible by 3 (05)
- d) Give formal definition of a Push Down automata (PDA) (05)
- Q2. a) Convert the following grammar to CNF

(10)

 $S \rightarrow Ba / aB$ $A \rightarrow bAA / aS / a$


 $B \rightarrow aBB/bS/b$

b) Design DFA to accept

- i. Binary Strings in which every 0 is followed by 11 (05)
- ii. String over the binary alphabet that do not contain the substring 010 (05)

Q.3:

a) Minimize the following DFA. (10)

Paper / Subject Code: 39403 / AUTOMATA THEORY

h)	Convert the following NFA to DFA	(final ctate is marked with *)
v_{i}	Convert the following INI A to DI A	d illiai state is illaiked with

(10)

∂	0	1
p	p,q	p
q	r	r
r	S	
*s	S	S

Q.4:

a) Design PDA for recognizing
$$L = \{ a^n b^m a^n \mid m, n > = 1 \}$$
 (10)

b) Design a Turing Machine to recognize the language $L = \{a^n b^n a^n \mid n >= 1\}$ (10)

Q.5:

a) Using the pumping Lemma prove that the following language is not regular

$$L = \{ ww \mid w = \{0, 1\}^* \}$$
 (10)

b) Design Melay machine to accept all the strings ending with 00 or 11 (10)

Q.6: Write a Short Note on (any **four**)

(20)

- a) Chomsky Hierarchy.
- b) Applications of Automata theory
- c) Universal Turing Machine
- d) Post correspondence Problem
- e) Halting Problem