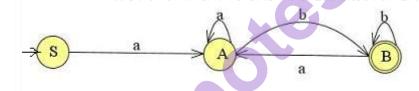
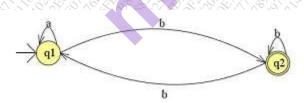
Q. P. Code: 40017


Duration: 3 Hours	Marks:80
-------------------	----------

- N.B. (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from remaining questions.
 - (3) Draw suitable diagrams wherever necessary.
 - (4) Assume suitable data, if necessary.
- Q.1 Attempt any four sub-questions.
 - a) State and explain advantages and limitation of regular and context free grammar.
 - b) Design a Mealy machine for a binary adder.
 - c) Give formal definition of PDA.
 - d) Construct the DFA that accept set of all strings over the alphabet $\Sigma = \{a, b\}$ 05 containing either the substring 'aaa' or 'bbb'.
 - e) Find the CNF equivalent to
 - $S \rightarrow aAbB, A \rightarrow aA \mid a, B \rightarrow bB \mid b.$

05


- Q2. a) What is NFA? Design a NFA for a binary number where the first and last digit is same. 10
 - b) Write a necessary function for the given automata.

10

Q3.a) i) Find a regular expression RE corresponding to the following FA

10

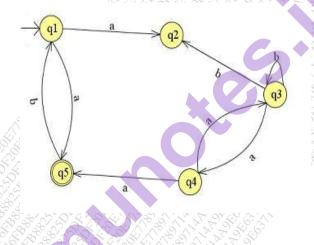
- ii) Give a regular expression for a language over the alphabet $\Sigma = \{a, b\}$ containing at most two a's
- b) Construct a Mealy machine that accepts strings ending in '00' and '11'. Convert the same to Moore machine.

Paper / Subject Code: 41005 / Automata Theory

Q. P. Code: 40017

- Q4.a) Design a PDA for CFL that checks the well formedness of parenthesis i.e the language 10 L of all balanced string of two types of paranthesis "()" and "[]".

 Trace the sequence of moves made corresponding to input string (([])[]).
 - 916


b) Construct a TM accepting palindromes over $\Sigma = \{a,b\}$.

- 10
- Q5. a) Let G be the grammar. Find the leftmost derivation, rightmost derivation and parse tree for the string 001222.

G: $S \rightarrow 0S \mid 1A \mid 2B \mid \epsilon$

$$A \rightarrow 1A \mid 2B \mid \epsilon$$

- $B \rightarrow 2B \mid \epsilon$
- b) Design a NFA for accepting input strings that contain either the keyword 000 10 or the keyword 010 and convert it into an equivalent DFA.

20

- Q6. Write short notes on (any four)
 - a) Variants of Turing Machines
 - b) Algorithm for CFG to CNF Conversion
 - c) Chomsky Hierarchy
 - d) Limitation of Finite Automata
 - e) Halting Problem.
