(Time: 3 hours) Max. Marks: 80

[5]

[6]

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Figures to the right indicate full marks

Q.1 a) Find
$$L(t + e^t + \cos t)^2$$
 [5]

Q.1 b) Find the Fourier series for
$$f(x) = x \sin x$$
 in $(-\pi, \pi)$

Q.1 c) Find Karl Pearson's coefficients of correlation between X and Y from the following data

 X
 100
 200
 300
 400
 500

 Y
 30
 40
 50
 60
 70

Q.1 d) If
$$f(z) = (x^3 + axy^2 + bxy) + i(3x^2y + cx^2 + y^2 + dy^3)$$
 is analytic, then find a, b, c, d [5]

Q.2 a) A random variable X has the following probability function

Find i) k, ii) $P(X \ge 4)$, iii) P(X < 5)

Q.2 b) Determine the analytic function whose real part is $u = e^x \cos y$ [6]

Q.2 c) Evaluate
$$\int_0^\infty e^{-t} \cosh t \cos 2t \ dt$$
. [8]

Q.3 a) Obtain the Fourier series for
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
 in the interval $(0, 2\pi)$ [6]

Q.3 b) A continuous random variable X has the p.d.f.
$$f(x) = kx^2e^{-x}$$
, $x \ge 0$ [6] Find i) k, ii) $P(1 \le x \le 2)$

Q.3 c) Find
$$L^{-1}\left[\frac{s+29}{(s+4)(s^2+9)}\right]$$
 using partial fraction method [8]

Q.4 a) Find
$$L[f(t)]$$
, where $f(t) = \cos t$, $0 < t < \pi$ and $f(t) = 0$, $t > \pi$ [6]

Q.4 b) Compute Spearman's rank correlation coefficient for the following data [6]

X	18	20	34	52	12
Y	39	23	35	18	46

Q.4 c) Obtain the Fourier series for

[8]

$$f(x) = \begin{cases} 1, & 0 \le x \le \pi \\ 2 - \frac{\pi}{x}, & \pi \le x \le 2\pi \end{cases}$$

Q.5 a) Find
$$L^{-1} \left[\frac{4s+13}{s^2+8s+13} \right]$$

Tol

Q.5 b) Find
$$L[(1 + sin2t)^2]$$

[6]

Q.5 c) Find the line of regression of Y on X for the following data

Γ8

X	5	6	7.00	8	9	10	11
Y	11	14	14	15	12	17	16

Q.6 a) Find mean and variance for the following distribution

[6]

X	8	12	16	20	24
P(X = x)	1/8	1/6	3/8	1/4	1/12

Q.6 b) Find i)
$$L^{-1}[\cot^{-1}2s]$$
 ii) $L^{-1}[\log(1+\frac{4}{s^2})]$

7

Q.6 c) Prove that the function $f(z) = e^{2z}$ is analytic. Also, find its derivative.

[8]
