Paper / Subject Code: 49804 / ANALOG AND DIGTAL CIRCUITS

	(3 Hours)	[Total Marks: 80
N.	B.: (1) Question No. 1 is compulsory.	
	(2) Solve any three questions out of remaining five.	
	(3) Figures to right indicate full marks.	
	(4) Assume suitable data where necessary .	
O1 S	Solve any four	20
V 1. r	a) Prove that NAND and NOR gate are universal gate.	
	b) Convert following decimal number to Binary ,Octal, Hexadecima i) (256) ₁₀ ii) (45) ₁₀	l and Gray code
	c) Draw and explain circuit diagram of a differentiator using Op-am	
	d) Covert S-R flip flop to D flip flop.	
	e) Derive the relation between α and β	
Q2.	a) Explain Voltage Divider Biasing Circuit with its stability factor.	10
	b) Implement following using only one 8:1 Multiplexer and few gate	S
	$F(A,B,C,D) = \sum_{i=1}^{n} m(0,1,2,3,5,7,9,11,12,15)$	10
Q3.	a) Draw circuit diagram and explain the operation of Astable Multiv	ibrator
	using IC555.	10
	b) Design 4-bit binary to Excess-3 code conversion.	10
Q4.	a) Minimize the following four variable logic function using K-map	and
	design by using only NAND gates	10
	$f(A,B,C,D)=\sum m (0,1,2,3,4,7,8,9,11,12,15)$	
	b) What are the different methods used to improve CMRR in Differ	ential
	Amplifier. Explain one in brief.	10
Q5.	a) Design a Mod 12 asynchronous counter using J-K-Flip Flop.	10
Y TO	b) With the help of neat diagram explain functioning of Universal Sh	nift register. 10
Q6 W	Vrite short notes on any four	20
	a) Design XOR gate using only NOR gates.	
5 3 V	b) Explain working of a Current Mirror Circuit.	
AND CO	c) Write VHDL program for half adder.	
667	d) Explain Encode and Decoder.	
376	e) Explain working of Zener diode with VI characteristics.	
55		
