[Time	: 2	Hours] [Marks: 6	50]	
		Please check whether you have got the right Question Paper		
N.B.		1. Question no 1 is compulsory		
		Attempt any three questions from Q.2 to Q.6		
		Use suitable data wherever required		
	4.	Figures to the right indicate full marks.		
Q.1		Attempt any five of the following.	15	
	Α	How interference of light is produced by (i) division of wave front and (ii) division of wavelength?		
	В	Give any three points of differentiation between interference and diffraction of light.	\$ v	
	С	Numerical aperture of an optical fiber is 0.5 and core refractive index is 1.54.		
		What is the refractive index of the cladding?		
	D	Differentiate between spontaneous and stimulated emission.		
		Explain dot product of two vectors.		
		Calculate the phase shift if the Lissajous pattern obtained is an ellipse with major		
		axis of 2 cm and minor axis of 0.8 cm.		
Q.2	Α	Obtain the condition for maxima and minima of the light reflected from a thin	08	
	2/2	transparent film of uniform thickness.		
		A parallel beam of monochromatic light of wavelength 5890 A° is incident		
		normally on a thin film of refractive index 1.5. Find the minimum thickness of		
		the so that it appears dark in the reflected light.		
	В	Derive an expression for numerical aperture of a step index fiber.	07	
Q.3		What is diffraction grating? What is diffraction element?	08	
		In a plane transmission grating, the angle of diffraction for the second order		
		principal maximum for the wavelength 5 X 10 ⁻⁵ cm is 30°. Calculate the number		
		of lines per centimeter on the grating surface.		
	В	With neat sketch explain construction, working with energy level diagram and	07	
		specialty of Nd:YAG laser.		
Q.4	Α	Define a field. What are scalar and vector fields?	05	
		Draw a schematic diagram and explain construction and working of CRT.	05	
		A wedge shaped air film having angle of 40 seconds is illuminated by	05	
		monochromatic light. Fringes are observed vertically through a microscope. The		
		distance between 10 consecutive dark fringes is 1.2 cm. Find wavelength of		
OF		monochromatic light.		
Q. 5	Α	Explain magnetostatic focusing and calculate pitch of the helix.	05	
		Show that the divergence of a curl of a vector is zero.	05	
		What is the radius of helical path of an electron with speed 3 X 10 ⁷ m/s enters	05	
		uniform magnetic field B = 0.23 Wb/m ² at 45° angle to B.		
Q.6	Α	Differentiate between photography and holography.	05	
		With the schematic diagram of SEM explain its construction and working.	05	
		Newton's rings experiment, the diameter of the 5 th ring was 0.336 cm and that	05	
		of 15 th ring was 0.59 cm. Find the radius of curvature of the planoconvex lens if	_	
		the wavelength of light used is 5890 A°.		

25531