University of Mumbai

Curriculum Scheme: Rev2016

All Programs

Examination: FE Semester I

_FH2022

Course Code:FEC102	Course Name: Applied Physics-I

Time: 2 hours Max. Marks: 60

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The square of the magnitude of the wave function is called
Option A:	current density
Option B:	probability density
Option C:	zero density
Option D:	Volume density
2.	Fermi energy level is defined as
Option A:	is the top most filled energy level at 0 Kelvin temperatures
Option B:	is the top most filled energy level at 0 degree Centigrade temperature
Option C:	separates valance band and conduction band
Option D:	is the top most empty energy level at 0 Kelvin temperatures
	2 2 8 8 9 C C K C 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3.	The critical magnetic field for vanadium is 10 ⁵ A/m at 8.58 K & 3 x 10 ⁵ A/m at 0 K. Its critical temperature is
Option A:	10.50 K
Option B:	1.050 K
Option C:	105 K
Option D:	15 K
00000	0,489,420,764,876,0,488
	For an empty assembly hall of size 20 x 15 x 10 cubic meter with absorption coefficient 0.106. Calculate reverberation time.
Option A:	3:5 sec
Option B:	5.3 sec
Option C:	35 sec 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Option D:	35 millisecond
5,4,60°2,	
5.5.	The inter-planar spacing between the (2 2 1) planes of a cube lattice of edge length 450 pm is:
Option A:	50 pm
Option B:	150 pm
Option C:	300 pm
Option D:	450 pm

6.	The audible frequency range of human ear is	8
Option A:	20 Hz to 200 Hz	
Option B:	2 Hz to 20 Hz	
Option C:	200 Hz to 2000 Hz	
Option D:	20 Hz to 20000 Hz	

Q2.	Please delete the instruction shown in front of every sub question	
(16 Marks)		
A	Answer Two out of Three 8 marks each	
i.	Derive Bragg's law. Calculate the wavelength of X-rays reflected from the	
	faces of a FCC crystal with lattice constant 2.82 Å, if the second order	
	Bragg reflection occurs at a glancing angle of 17.167°.	
ii.	Derive one dimensional time dependent Schrodinger equation for matter waves. An electron is bound in one dimensional potential well of width 2 Å but of infinite height. Find its energy values in the ground state & first	
	excited state.	
iii.	State & explain Hall effect. Derive an expression for Hall voltage & Hall coefficient.	

Q3. (16 Marks)	Please delete the instruction shown in front of every sub question
A	Answer Four out of Six 4 marks each
i.	An electron has a speed of 400 m/sec with uncertainty of 0.01%. Find the accuracy in its position.
ii	Show that for an intrinsic semiconductor Fermi level lies in the middle of forbidden band.
	Find the resistivity of intrinsic Germanium at 300° K. Given density of carrier is 2.5 ×10 ^19 /m^3. Mobility of electron is 0.39 m^2/V-sec.& mobility of holes is 0.19 m^2/V-sec. Charge on electron is 1.6 ×10^19 C.
	Calculate the number of atoms per unit cell, atomic radius & atomic packing factor for diamond unit cell
	Distinguish between type –I & type-II superconductor.
Vi	What will be the Young's modulus of quartz if a 5.5 mm thick quartz plate is used to produce an ultrasonic wave of frequency 0.4999 MHz? the density of quartz is 2.65×10^3 kg/m ³ .

Q4. (16 Marks)	Please delete the instruction shown in front of every sub question	
A	Answer Four out of Six 4 marks each	
	Draw the diagram of magnetostriction oscillator & explain its working as an ultrasound generator.	

ii.	Explain the conditions necessary for good acoustical design of an
	auditorium.
iii.	Explain the construction & working of a solar cell
iv	What is probability of an electron being thermally excited to the conduction
	band is Silicon at 27°c.the band gap energy is 1.12 eV.
V	A sample of n-type Silicon has a donor density of 10^20 /m^3. It is used in the Hall effect experiment. If the sample of thickness 4.5 mm is kept in a magnetic field of 0.55T with current density of 500 A/m^2. Find i) Hall voltage developed in it ii) Hall coefficient if mobility of electron is 0.17 m^2/V-sec.
vi	Using Heisenberg's principle show that electrons cannot exist within the nucleus.

