University of Mumbai

Examinations Summer 2022

Program: First Year Engineering Curriculum Scheme: Rev. 2019 C Scheme

Examination: FE Semester I

Course Code: FEC102 and Course Name: Engineering Physics-I

Time: 2-hour Max, Marks: 60

Q1.	Choose the correct option for following questions. All the Questions are compulsory. (2 Marks each)
1.	When a ray of light is traveling from a denser medium to rarer medium the refracted
Option A:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Option B:	Changes phase by $\pi/4$
Option C:	Changes phase by $3 \pi / 2$
Option D:	Does not change phase
option B.	See her change phase
2.	The de Broglie wavelength of an electron which has been accelerated from rest through a potential of 64V is
Option A:	3.258 A.U. 3.258 A.U.
Option B:	2.228A.U. 2000 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Option C:	1.535 A.U.
Option D:	1.228 A.U.
3.	In which band the Fermi level of n-type semiconductor overlaps if the impurity concentration is increased?
Option A:	Intrinsic fermi level
Option B:	Conduction band
Option C:	Valence band
Option D:	Acceptor level
4.70	The minimum thickness of a parallel film, of R.I. μ , illuminated with light for which it appears bright is
Option A:	$\mathcal{N}(2\mu)$
Option B:	$\mathcal{N}(4\mu)$
Option C:	$2\mathcal{N}(4\mu)$
Option D:	$3\lambda(4\mu)$
2	The interplanar spacing for a (111) plane in simple cubic crystal whose lattice constant is 4×10^{-8} cm is
Option A:	1.123 A°
Option B:	2.309 A°
Option C:	1.561 A°
Option D:	1.981 A°
3,43,53	
0.56.75	The critical magnetic field for Vanadium is 10 ⁵ A/m at 8.58°K and 2 X 10 ⁵ A/m at 0°K. Its critical temperature is
Option A:	12.133 K
Option B:	14.133 K
Option C:	13.533 K

Option D:	11.133 K	3	S. X.	2	3	5	3	30	S. V.	1	5

Q2	Answer any 4 questions out of 6 (4 marks each)
A	A mixture of red light of wavelength 6600A ⁰ and blue light of wavelength 4400A ⁰ is incident normally on an air film formed between two glasses plates. The thickness of the air film is 3300A ⁰ . What is the color of light reflected by the air film?
В	A copper strip 1cm wide and 1mm thick is placed in a magnetic field $B=1.5 \text{ Wb/m}^2$. If current of 200A is set up in the strip, calculate Hall voltage that appears across the strip. Given, $R_H=6 \times 10^{-7} \text{ m}^3/\text{C}$.
С	The spacing between the nuclei of certain crystal is 1.2 A°. At what angle will first order Bragg's reflection occur for thermal neutrons (Given: mass of neutron is 1.67 x 10 ⁻²⁷ Kg and kinetic energy of neutrons is 0.025eV).
D	Describe the method for determination of wavelength of light using Newton's ring set up.
Е	Discuss the effect of variation in temperature on the fermi energy level of n-type semiconductor with the help of labelled diagram.
F	Derive the expression for energy eigen values for free particle in one dimensional potential well.

Q3	Answer any 4 questions out of 6 (4 marks each)					
A	What are Miller Indices? Draw the following in a cubic unit cell. i) $(1\ 2\ 3)$ ii) $(\overline{1}\ 0\ \overline{2})$ iii) $(0\ 0\ \overline{2})$					
В	Show that the intrinsic fermi level lies in the middle of the band gap.					
С	Prove that fringe width is constant in a wedge-shaped thin film set up.					
D	Derive the Schrodinger's time independent differential equation for matter waves.					
E	Distinguish between Type I and Type II superconductors.					
F	What is the probability of an electron being thermally excited to the conduction band in Si at 30°C? The band gap energy is 1.12eV.					

Q4	Answer any 4 questions out of 6 (4 marks each)					
	What is De-Broglie's hypothesis? Derive expression for De Broglie's wavelength.					
B	Explain the construction and working principle of a Light Emitting Diode.					
	Monochromatic X-rays are incident on a crystal. If first order reflection is observed at a glancing angle of 3.4°, at what angle would the second order reflection is expected?					
D	The ground state energy of an electron in an infinite well is 5.6 x10-3 eV. What will be the ground state energy if the width of the well is doubled?					
	What is antireflection coating? What should be the refractive index and minimum thickness of the coating?					
SS F. F.	What is Meissner's effect? Show that a superconductor is a perfect diamagnet.					