TOTAL MARKS: 80

TIME: 3hrs

NB

- 1) Question No. 1 is compulsory.
- 2) Answer any three questions out of remaining five questions.
- 3) Assumption made should be clearly stated.
- 4) Answer to questions should be grouped together and written together.

Q1 a. Find R_{AB}

3

b. Find the Norton's equivalent across AB.

3

- c. A pure inductor of 0.2 H is connected across single phse 200 V, 50 Hz 3 supply. Write the instantaneous equation of voltage and current.
- d. Write any four conditions of series resonance.
- e. What is the phase line relation in star connected system?
- f. Explain the working of a single phase transformer under load 4
- g. Illustrate the working of half wave rectifier.
- Q2 a. Using Mesh analysis find current through 2 Ω resistor.

6

3

b. The impedances (8+6) Ω and (10-j10)Ω are connected in parallel across 8 voltage of 230∠0. Determine current in each branch and kVA, kVAR, kW and power factor of the whole circuit.

[TURN OVER

Paper / Subject Code: 58503 / Basic Electrical & Electronics Engineering.

c. Derive emf equation of a single phase transformer

6

7

- Q3 a. Calculate the phase and line currents in a balanced delta connected load 8 taking 75 kW at a power factor of 0.8 lag from a three phase 440 V supply. Also calculate the per phase impedance.
 - b. Illustrate with neat circuit diagram the procedure for conducting open circuit test and short circuit test.
 - c. Illustrate with neat diagram and explain the input characteristics of an 4 NPN transistor in CE configuration.
 - d. Draw the circuit diagram and output voltage waveform of a full wave 2 rectifier with capacitor filter.
- Q4 a. Find current through 8 Ω resistor using source transformation.

- b. Three identical coils each having a resistance of $10~\Omega$ and an inductive reactance of $10~\Omega$ are connected in star across 400~V three phase supply. 4 Find the reading on each of the watt meters connected to measure the power
- c. Define the rms value of an ac quantity.

- 5
- d. Derive rectification efficiency and ripple factor of a full wave bridge 4 tapped rectifier.
- Q5 a. Determine the current through 8Ω resistor in the network using 8Ω Thevenin's theorem

- b. An rms voltage of $100 \angle 0$ is applied to an impedance $Z = 20 \angle 30$. Find 4 the current through the circuit and power factor of the circuit.
- c. Derive the conditions for maximum efficiency of a single phase 8 transformer.

[TURN OVER

7

Q6 a. Find current through 4 Ω resistor using superposition theorem.

- b. A series R-L-C circuit with R=10 Ω , L=0.014 H and C=10 μ F is 7 connected across 230V variable frequency supply. Calculate a) resonance frequency b) current at resonance c) Q-factor d) voltage across inductor and capacitor and e) power factor at resonance.
- c. Prove that the power and power factor in a balanced three phase circuit 6 can be calculated from the reading of two watt meters. Draw relevant connections and phasor diagram.

67344 3 of 3