Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2019 Examination: Third Year VI Semester

Course Code: ECC604 and Course Name: Artificial Neural Networks and Fuzzy Logic

Time: 2 Hour and 30 Min Max. Marks: 80

Note to the students: - All the Questions are compulsory and carry equal marks.

Note to the s $Q1$.	XOR problem is exceptionally interesting to neural network researchers because		
Option A:			
	It can be expressed in a way that allows you to use a neural network		
Option B:	It is complex binary operation that cannot be solved using neural networks		
Option C:	It can be solved by a single layer perceptron		
Option D:	It is the simplest linearly inseparable problem that exists.		
Q2.	The network that involves backward links from output to the input and hidden layers is called as		
Option A:	Self-organizing maps		
Option B:	Perceptron		
Option C:	Recurrent neural network		
Option D:	Multi layered perceptron		
Q3.	Automated vehicle is an example of .		
Option A:	Supervised Learning		
Option B:	Unsupervised Learning		
Option C:	Kohonen Learning		
Option D:	Reinforcement Learning		
Q4.	In an Unsupervised learning		
Option A:	Specific output values are given		
Option B:	Specific output values are not given		
Option C:	No specific Inputs are given		
Option D:	Both inputs and outputs are given		
Q5.	computes the output volume by computing dot product between all filters and image patch.		
Option A:	Input Layer		
Option B:	Convolution Layer		
Option C:	Activation Function Layer		
Option D:	Pool Layer		
Q6.	If an input image is a matrix of size 28 X 28 and a kernel/filter of size 7 X 7 with a stride of 1. What will be the size of the convoluted matrix?		
Option A:	20 x 20		
Option B:	26 x 26		
Option C:	24 x 24		
Option D:	22 x 22		
1 VT (/ , \ \ \/) C	Market Artic		

Q7.	In a simple Multi-layer Perceptron neural network model with 10 neurons in the
	input layer, 4 neurons in the hidden layer and 1 neuron in the output layer. What is
	the size of the weight matrices between hidden output layer and input hidden
	layer?
Option A:	[1 X 4], [4 X 10]
Option B:	[4 X 1], [10 X 4]
Option C:	[10 X 4], [4 X 1]
Option D:	[10 X 4], [1 X 4]
Q8.	In a fuzzy set, the membership function generally in ranges
Option A:	10-100
Option B:	100-1000
Option C:	
Option D:	
Q9.	Three main basic features involved in characterizing membership function are
Option A:	Intuition, Inference and Rank ordering
Option B:	Weighted Average, Mean of maximum, Centroid
Option C:	Fuzzification, Defuzzification, Knowledge base
Option D:	Core, Support and Boundary
Q10.	In SVM, if the number of input features is 2, then the hyper plane is a
Option A:	Line
Option B:	Plane
Option C:	Circle C Circle
Option D:	Square

Q2	Solve any Four out of Six	(5 marks each)
A	Compare Artificial Neurons with Biological Neurons. Diological Neuron.	Praw the structure of
B	What are Support Vectors in Support Vectors Machines SVM differs from conventional classifiers?	(SVM)? How
8605C	Draw two input AND gate using MP neuron	
D	What do you mean by K Means algorithm? Where is it	used?
	What are the different types of Neural Network architec	etures?
	Prove Demorgans's Theorem for the given two fuzzy Fuzzy set $A = \left\{ \frac{0.4}{10} + \frac{0.9}{20} + \frac{0.1}{30} \right\}$ and Fuzzy set $B = \left\{ \frac{0.2}{10} + \frac{0.9}{20} + \frac{0.1}{20} \right\}$	

	Q3	Solve any Two out of Three	(10 marks Each)
A		What is Mamdani Fuzzy Inference System (FIS)? What	
		knowledge base and rule base in FIS? Draw the block dia	igram of FIS.
		Organize the given samples (1 1 0 0), (0 0 0 1), (1 0 0 0) into two clusters
	B	using Kohonen self-organizing map. Assume the learni	ng rate as 0.1.The
		weight matrix is given by	

	$/0.1 0.6 \setminus$
	$w_{ij} = \begin{pmatrix} 0.2 & 0.8 \\ 0.8 & 0.2 \end{pmatrix}$
	\0.1 0.5
C	With neat flow chart, describe the training algorithm for Perceptron
	network.
	80 N 4 10 N C O 2 N N X X X X X X X X X X X X X X X X X

Q4	Solve any Two out of Three (10 marks ear	ch)
A	Design a fuzzy controller to determine the wash time of a fuzzy wash machine. Assume the two fuzzy inputs are dirtiness of cloth and wash load. Consider 3 descriptors for both inputs and output. Show that wash to high if clothes are soiled to higher degree.	ning
В	Draw Hopfield network with four output nodes. List the steps involved its testing algorithm. For an input vector (1 1 0 1), calculate the weight matrix.	n
С	Draw the architecture of simple Convolution Neural Network. Define following terms with respect to CNN. i. Convolution ii. Max Pooling iii. ReLU Activation iv. Flattening	the