Duration: 3hrs [Max Marks:80]

- **N.B.**: (1) Question No 1 is Compulsory.
 - (2) Attempt any three questions out of the remaining five.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data, if required and state it clearly.
- 1 Attempt any FOUR.

[20]

- Specify formulas for computing Euclidian distance, City-block distance and Chess-board distance in digital images. Draw the locus of each them.
- b Justify/contradict: Salt-pepper noise in a digital image can be better removed by a median filter rather than an averaging filter.
- c State what is the cause of the 'Ringing effect' when a digital image is filtered in frequency domain. How can the effect be minimized?
- d Explain with a diagram what are support vectors in a SVM. Do they affect the classification process? If yes, how?
- e Illustrate with an example what is grey level co-occurrence matrix in texture analysis.
- 2 a Given a grey scale image as follows:

[10]

[10]

_			_		_	_	_
1	1	1	1	1	1	1	2
1	B	1	1	1	1	1,4	0
2	3	2	1	7	4	1	2
	1	0 0	1	5	4	0	1
1	1	6	6	6	5	1	0
1	1	5	4	6	7	1	0
1 .	1	3	2	2	2	0	0
4	1	2		1	1	0	0

- i. Draw Histogram of the image.
- ii. Perform histogram equalization on the image.
- iii. Draw transformation function.
- iv. Draw output image histogram.
- b Describe the Canny Edge Detection method step-by-step. Support your answer with appropriate diagrams.

12285

3 a For the 2x2 transform matrix

[10]

[10]

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix}$$
 and a sub-image $U = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ compute the image transform and the basis images.

b Write an expression for a two-dimensional DCT. Form a 4x4 DCT matrix and compute the DCT of the following sub-image. [10]

$$I = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 \end{bmatrix}$$

- 4 a Explain the Hit-and-Miss transform in Morphology. Explain how morphology can be used [10] for boundary detection.
 - b Differentiate between shape and region descriptors. State their examples. Explain signatures in detail. [10]
- 5 a For the given image, perform region based segmentation by split and merge technique. [10] Illustrate the splitting technique with a quad tree graph. Use the Predicate P>=10 for splitting and merging.

1	13	12	13	12	11	12	11	12
1	13	13	63	63	61	11	12	11
1	1	12	63	62	61	62	12	12
	3	13	62	63	62	61	13	13
	2	11	62	63	62	11	12	11
(52	62	63	61	61	62	13	13
(52	61	61	62	13	12	13	11
(61	62	63	11	12	11	12	12

- b Explain smoothening and sharpening filters in frequency domain.
- 6 a Explain the need of good classifiers in object recognition. List different classifiers. [10] Explain the Bayesian classifier in detail.
 - b Explain the K-means clustering algorithm with a suitable example. [10]
