Duration: 3hrs

[Max Marks:80]

N.E	3. :	(1) Question No 1 is Compulsory.(2) Attempt any three questions out of the remaining five.	
		(3) All questions carry equal marks.	
		(4) Assume suitable data, if required and state it clearly.	
1		Attempt any FOUR	[20]
	a	1-bit 5 stage shift register	
	b	Explain the working of floating gate transistor in Flash memory.	
	c	For enhancement type NMOS transistor threshold voltage V_T =0.7V, $\mu nCox$ =40	
		$\mu A/V2,W=30\mu m,L=10~\mu m.$ Calculate I_D if for VGS = 2 , $V_{DS}{=}~2V$	
	d	Explain clock distribution in VLSI design.	
	e	Draw HLSM of soda dispenser machine	
2	a	Consider a CMOS inverter with following parameters:	[10]
		nMOS VTN = 0.6 V μ nCox = 60μ A/V2 (W/L)n = 8	
		pMOS $VTp = -0.7 V$ $\mu pCox = 25 \mu A/V2$ $(W/L)p = 12$	
		Calculate the V_{IL} and V_{TH} . The power supply voltage is $VDD = 3.3 \text{ V}$.	
	b	Explain pWell fabrication process with neat diagrams.	[10]
3	a	Realize SR flip flop using CMOS logic and draw its layout.	[10]
	b	Explain 6T SRAM with its read and write operation.	[10]
4	a	Realize the expression $Y=A(B+C)$ D using the following logic style.	
		1. CMOS logic	
		2. Pseudo NMOS	
		3. Dynamic Logic	
		4. Domino Logic	
	b	Implement the following	[10]
		1. 3x3 Array multiplier	
		2. 4:1 mux using TG	
5	a	Implement the following	[10]
		1. 4 bit carry lookahead adder carry using dynamic logic	
		2. 8-bit carry bypass adder	

2784 Page 1 of 2

Paper / Subject Code: 32223 / Digital VLSI

b Draw 4 *4 bit NAND based array and NOR based array to store the following data [10] in respective memory locations.

Memory address	Data
1000	0101
0100	1101
0010	0010
0001	1011

- 6 a Design a 'serial FIR filter' using the RTL design process. Draw HLSM,FSM, [10] interface and Datapath
 - b Realize the expression Y = A+ BC (D+E) +F using CMOS logic. Find equivalent [10] CMOS inverter for simultaneously switching of all input. Assume $(\frac{W}{L})p = 15$,
