University of Mumbai

Examinations Commencing from 17th May 2022

Program: SEM IV C Scheme
Curriculum Scheme: C Scheme R-2019
Examination: SE Semester IV

Course Code: ECC403 and Course Name: Linear Integrated Circuits

Time: 2-hour 30 minutes

Max. Marks: 80

Q1. (2 Marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
Each)			
1.	The input stage of operational amplifier is		
Option A:	Common Emitter Amplifier		
Option B:	Dual Input Balanced output Differential Amplifier		
Option C:	Common Base Amplifier		
Option D:	Common Collector Amplifier		
•			
2.	For the difference amplifier shown below, the output voltage is given by $v_2 \circ R = R = R = R = R = R = R = R = R = R$		
Option A:	$v_0 = v_1 + v_2$		
Option B:	$\dot{v}_0 = \dot{v}_1 - \dot{v}_2$		
Option C:	$v_0 = -v_1 + v_2$		
Option D:	$v_0 = -(v_1 + v_2)$		
7 4 6 6			
3.3.3	A current to voltage converter converts		
Option A:	Input current to proportional output voltage.		
Option B:	Input current to proportional output current.		
Option C:	Input voltage to proportional output voltage.		
Option D:	Input voltage to proportional output current.		
72 20 20 XX			
\$ (8° 4° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	For a Wein Bridge oscillator, the RC networks in the feedback circuit have values		
\$75 6 85 A	of their resistances $R = 3.3 \text{ k}\Omega$ and capacitances $C = 0.047 \mu\text{F}$,		
Option A:	Its frequency of oscillation is $\approx 1 \text{ kHz}$		
Option B:	Its frequency of oscillation is $\approx 3.030 \text{ kHz}$		
Option C:	Its frequency of oscillation is $\approx 3.3 \text{ kHz}$		
Option D:	Its frequency of oscillation is $\approx 480 \text{ Hz}$		
7 2 0 2 D 2 T TOT A	18.7.3.8.98		
0,000	An Inverting Schmitt trigger employs		

Option A:	Only Negative feedback	
Option B:	Only Positive feedback	
Option C:	Both Negative and Positive feedback	
Option D:	No feedback	
1		
6.	A square waveform having ON time equal to its OFF time is fed as input to	
	integrator. The resulting output of the integrator is called	
Option A:	Triangular waveform	
Option B:	Sawtooth waveform	
Option C:	Inverted Square waveform	
Option D:	Sine waveform	
7.	The output pulse width of a monostable multivibrator using IC 555 where R and	
	C are the external components is	
Option A:	RC PSS PSS PSS PSS PSS PSS PSS PSS PSS PS	
Option B:	1.1 RC	
Option C:	(2/3) RC	
Option D:	(1/3) RC	
8.	Role of Pin-7 of IC 555	
Option A:	Control Voltage	
Option B:	Reset	
Option C:	Output	
Option D:	Discharge	
9.	For High voltage-High current type of voltage regulator using IC 723, output	
	voltage and output currents respectively have the following correct values.	
Option A:	Less than 7 V, greater than 150 mA	
Option B:	Less than 7 V, less than 150 mA	
Option C:	7 to 37 V, greater than 150 mA	
Option D:	7 to 37 V, less than 150 mA	
10.	For a Phase Locked Loop which of the following is true?	
Option A:	Lock in range > Capture range	
Option B:	Lock in range < Capture range	
Option C:	Lock in range = Capture range	
Option D:	Lock in range = half of Capture range	
Opuon D.	Thouse In lange — nam or Capture range	

Q2 (10 Marks Each)	Solve any Two Questions out of Three 10 marks each
	Design a second order high pass Butterworth filter for cut off frequency of 1 kHz.
B	With the help of a neat diagram explain the working of R C phase shift oscillator using op amp. Derive the expression for its frequency of oscillation.
	With help of neat circuit diagram, input and output waveforms, and voltage transfer characteristics explain the working of a non-inverting Schmitt trigger.

Q3 (10 Marks	Solve any Two Questions out of Three 10 marks each
Each)	
A	With the help of functional block diagram explain the working of PLL IC 565.
В	Design an astable multivibrator using IC 555 for frequency 1 kHz & duty cycle 50%. Assume $C=0.1\mu F$.
C	Draw a neat circuit of an instrumentation Amplifier using 3-Op-Amps & Derive its output equation.

Q4 (10 Marks Each)	Solve any Two Questions out of Three 10 marks each
A	With the help of a neat circuit diagram and waveforms at relevant points in the circuit, explain the working of a square and triangular waveform generator. Derive the frequency of oscillation of the generator.
В	Design a circuit using op-amp to perform $V_0 = 2V_2 - 3V_1$, where V_1 and V_2 are inputs.
С	Design a voltage regulator using IC 723 to deliver an output voltage of 15 V and load current upto 1.5 A.