University of Mumbai Examination Summer 2022

Program: **EXTC**Curriculum Scheme: Rev 2019
Examination: SE Semester IV

Paper Code: 40824 Course Code: ECC404 and Course Name: Signals and Systems

Time: 2 hours and 30 minutes

Max. Marks: 80

Q1(20 Marks)	Choose the correct option for the following questions. All the Questions are compulsory and carry equal marks		
1.	A system is described by differential equation $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = x(t)$ is		
	initially at rest. For input $x(t) = 2u(t)$ the output $y(t)$ is		
Option A:	$(1-2e^{-t}-e^{-2t})u(t)$		
Option B:	$(1 - 2e^{-t} - 2e^{-2t})u(t)$ $(0.5 + e^{-t} + 1.5e^{-2t})u(t)$		
Option C:	$(0.5 + e^{-t} + 1.5e^{-2t})u(t)$		
Option D: $(0.5 + 2e^{-t} + 2e^{-2t})u(t)$			
2.	The power in the signal (t) = $8\cos(20\pi t - (\pi/2)) + 4\sin(15\pi t)$ is equal to		
Option A:	40		
Option B:	42		
Option C:	41		
Option D:	82		
opnon B.			
3.	Find the Z-transform of $y(n) = x(n+2)u(n)$		
Option A:	$z^2 X(z) - z^2 x(0) - zx(1)$		
Option B: $z^2 X(z) - z x(0) - zx(1)$			
Option C:	$z^2 X(z) - z^2 x(0) + zx(1)$		
Option D:	$z^2 X(z) + z^2 x(0) + zx(1)$		
300			
4.5	Find the Z-transform of $x(n) = n[a^n u(n)]$.		
Option A:	17 (z (z-a))		
Option B:	az/(z(z-a))		
Option C:	az/(z(z+a))		
Option D:	$a/(z(z-a)^2)$		
5.7	If two LTI systems with impulse response h1(t) and h2(t) and are connected in parallel then output is given by		
Option A: $y(t) = x(t) *(h1(t) + h2(t))$			
Option B:	y(t) = x(t) + (h1(t) + h2(t))		
Option C:	y(t) = x(t) * (h1(t) h2(t))		
Option D:	y(t) = (x(t) * h1(t)) + h2(t)		
6.	Laplace transform of e ^{-2t} u(t)		
Option A:	1/(S+2)		
Option B:	S/(S+2)		
Option C:	1/(S-2)		

7. Inverse Laplace transform of a constant 5 Option A: 5 Option B: 5 \(\text{ 8} \) (t) Option C: 5 \(e^t \) Option D: 5 \(e^{-t} \) 8. RoC of finite duration left sided DT signal Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = 0$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ Option A: Entire z-plane Option A: Entire z-plane except $z = 0$ and $z = \infty$ Option C: Entire z-plane except $z = 0$	Option D:	S / (S-2)			
Option A: 5 Option B: 5δ (t) Option C: $5 e^t$ Option D: $5 e^{-t}$ 8. RoC of finite duration left sided DT signal Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$					
Option B: 5δ (t) Option C: $5 e^t$ Option D: $5 e^{-t}$ 8. RoC of finite duration left sided DT signal Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	7.	Inverse Laplace transform of a constant 5			
Option C: $5 e^{t}$ Option D: $5 e^{-t}$ 8. RoC of finite duration left sided DT signal Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	I				
Option D: $5 e^{-t}$ 8. RoC of finite duration left sided DT signal Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	Option B:	5 δ (t)			
8. RoC of finite duration left sided DT signal Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except Z = 0 Option D: Entire Z-plane except Z = ∞ 9. The discrete time Fourier Transform of x[n] = {2, 1, 2} Option A: 1/(1+4 cos ω) e ^{-jω} Option B: (2+4 cos ω) e ^{-jω} Option C: (1+4 cos ω) e ^{-jω} Option D: (e ^{-jω} +4 cos ω) e ^{-jω} 10. The ROC of the signal x[n]= a ⁿ for -5 < n <5 Option A: Entire z-plane Option B: Entire z-plane except z=0 and z=∞	Option C:	5 e ^t			
Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	Option D:	5 e ^{-t}			
Option A: Right side of imaginary axis Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$		880×44×888×868			
Option B: Left side of imaginary axis Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	8.	RoC of finite duration left sided DT signal			
Option C: Entire Z-plane except $Z = 0$ Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	Option A:	Right side of imaginary axis			
Option D: Entire Z-plane except $Z = \infty$ 9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	Option B:	Left side of imaginary axis			
9. The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$ Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z=0$ and $z=\infty$	Option C:				
Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z=0$ and $z=\infty$	Option D:	Entire Z-plane except $Z = \infty$			
Option A: $1/(1+4\cos\omega) e^{-j\omega}$ Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z=0$ and $z=\infty$					
Option B: $(2+4\cos\omega) e^{-j\omega}$ Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z=0$ and $z=\infty$	9.				
Option C: $(1+4\cos\omega) e^{-j\omega}$ Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z=0$ and $z=\infty$	Option A:	$1/(1+4\cos\omega)e^{-j\omega}$			
Option D: $(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$ 10. The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$ Option A: Entire z-plane Option B: Entire z-plane except $z = 0$ and $z = \infty$	Option B:				
10. The ROC of the signal x[n]= a ⁿ for -5 < n <5 Option A: Entire z-plane Option B: Entire z-plane except z=0 and z=∞	Option C:				
Option A: Entire z-plane Option B: Entire z-plane except z=0 and z=∞	Option D:	$(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$			
Option A: Entire z-plane Option B: Entire z-plane except z=0 and z=∞		9898997X4446978968			
Option B: Entire z-plane except z=0 and z=∞	10.	The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$			
Option C: Entire z-plane except z=0	Option B:	Entire z-plane except $z=0$ and $z=\infty$			
	Option C:	Entire z-plane except z=0			
Option D: Entire z-plane except z=∞	Option D:	Entire z-plane except z=∞			

Q2 (20 Marks)			
A	Solve any Two 5 marks each		
	Find the Laplace transform of $x(t) = 5\sin\omega_0 t$ u(t) and sketch the RoC		
	If $x[n] = [4 \ \underline{2} \ 1 \ 3]$, Sketch $x[n]$, $x[-n]$, $-x[-n]$, $x[-2n]$ and $x[n/2]$		
iii.	Verify the given signals are periodic or not. If periodic, determine the period and frequency of each signal $x_1(t) = \cos 50\pi t$, $x_2(t) = \cos 100\pi t$, $x_3(t) = x_1(t) + x_2(t)$ and $x_4(t) = x_1(t) + x_2(t)$		
Book	Solve any One 10 marks each		
	Perform convolution of the causal signals, using Laplace transform. $\mathbf{x}_1(t) = \cos t \mathbf{u}(t), \mathbf{x}_2(t) = t \mathbf{u}(t)$		
	Find the Fourier transform of following signal and plot magnitude and phase spectrum		

, E	Q3 (20 Marks)		
20	A C C C C C C C C C C C C C C C C C C C	Solve any Two	5 marks each
N A	9 6 6 6 15 6 6°	Input to a continuous time system is $x(t) = 3$, $0 < t$	

	elsewhere. Sketch $x(t+3)$, $x(-t+3)$, $x(-t-3)$, $x(3t)$ and $x(t/3)$	
ii.	Find the IZT of $X[z] = 3+2z^{-1}+z^{-2} / 1-3z^{-1}+2z^{-2}$ using partial fraction	
	method	
iii.	Determine the even and odd parts of the signals.	
	$x[n] = \{4, -4, 2, -2\}$ (Please note - the arrow is under -4)	
В	Solve any One 10 marks each	
i.	$\nabla C_{i} = (j\omega + 3)$	
	Find inverse Fourier transform of $X(j\omega) = \frac{(j\omega+3)}{(j\omega+4)(j\omega+2)^2}$	
ii.	ii. Using the differentiation in frequency property, find the Fourier	
	transform of $y(t)=t$ $x(t)$ where $x(t)=e^{-bt}$ $u(t)$.	

Q4 (20 Marks)			
A	Solve any Two 5 marks ea	ich State of	
i.	Using canonical structure, realize the following IIR syrelation $y[n] = x[n] + 2x[n-1] + 3y[n-1]$		
ii.	Realize the following FIR system with $h[n] = [4,0,2,-3,-4]$		
iii.	Find x(t) * h(t) using LT and ILT where x(t) = u(t) and h(t) = δ (t-3)		
В	Solve any One 10 marks ea	ch	
i.	Impulse response of a LTI system is given as $h(t) = e^{-4t} u(t)$ sketch the RoC and verify the stability of the system		
ii.	ii. A causal DT LTI system is described by $y(n)-(5/6)y(n-1)+(1/6)y(n-2)=x(n)$, where $x(n)$ and $y(n)$ and output of the system. Find the response $y(n)$ for the $x(n)=(1/4)^n u(n)$.		