Paper / Subject Code: 40823 / Linear Integrated Circuits

Time: 3 hours	Total Marks: 80
N.B.:	
1) Question No.1 is compulsory	
2) Solve any three from the remaining five.	
3) Figures to the right indicate full marks.	
*****************	*****
Q. 1 Attempt any four questions.	Tegy, Seely
A. List characteristics of an ideal and practical operational amplifier.	[5]
B. What are the limitations of basic differentiator using op amp? Draw t	he circuit
diagram of a practical differentiator and explain how it overcomes the	e limitations. [5]
C. How are Precision Rectifiers different from simple diode rectifiers? E	Explain Half
wave Precision Rectifiers.	[5]
D. Write a note on Pulse Width Modulator using IC 555.	[5]
E. Explain working of switching regulator.	[5]
F. With a diagram explain how IC 566 can be used as a voltage-controll	ed oscillator. [5]
Q. 2 A. Draw a neat circuit diagram of an inverting summing amplifier u	ising op-amp
and obtain the expression for its output voltage as	
$V_{\rm O}$ = - (V_1 + V_2 + V_3), where V_1 , V_2 , V_3 are input voltages.	[10]
B. Design an practical integrator using op-amp to integrate an input	signal where
lowest desired frequency of Integration is 1 kHz.	[10]
Q. 3 A. With the help of a circuit diagram, input and output waveforms a	and voltage
transfer characteristics explain the working of an inverting Schn	nitt trigger. Derive
the expressions for the Upper & lower threshold levels. Explain	how these levels
can be varied.	[10]
B. Explain monostable multivibrator using IC 555 with a neat circu	ıit diagram
and relevant waveforms. Calculate the value of timing resistor F	_
of 11 ms. Assume $C = 0.1 \mu F$.	[10]

27793 Page **1** of **2**

Paper / Subject Code: 40823 / Linear Integrated Circuits

Q. 4	A. Design an op-amp circuit to obtain $V_0 = 2V_1 + 5V_2$ where $V_1 \& V_2$, are input		
	voltages.	[10]	
	B. Design an adjustable output voltage regulator using IC 317 to give		
	7 to 10 Volts at $I_L=1$ Ampere. Given $I_{ADJ}=100~\mu A.$ Choose $R_1=240~\Omega$	[10]	
Q. 5	A. With the help of a diagram explain the working of R C phase shift oscillate	or	
	using op amp. Derive the expression for its frequency of oscillation. What	are the	
	values of R & C of the frequency determining network if its frequency of		
	oscillation is 1 kHz?	[10]	
	B. With the help of a diagram and wave forms at appropriate points in the circ	cuit	
	explain the working of square and triangular waveform generator using op	amps.	
		[10]	
Q. 6	Write short notes on: (Attempt any four)		
	A. Closed loop Inverting Amplifier using Op-amp	[5]	
	B. Voltage to Current Converter	[5]	
	C. Window detector	[5]	
	D. Astable Multivibrator using IC 555	[5]	
	E. IC 723 as a High Voltage Low Current regulator	[5]	
/	F. IC 565 Phase Locked Loop (PLL)	[5]	
	****************	***	

27793 Page **2** of **2**