(3 Hours) (Total Marks: 80)

- N. B.: 1. Question No. 1 is compulsory.
  - 2. Attempt any three out of the remaining five.
  - 3. Assume suitable data, wherever **necessary** and **justify** the same.
  - 4. Figures to the right indicate full marks.
- **1. A)** Compare MOM, FEM and FDM.

(5)

**B)** Given the potential  $V = 2x^2y - 5z$  (V) and a point P (-4, 3, 6), find

(2+2+1)

- a) Electric field intensity at P
- b) Electric flux density at P
- c) Volume charge density at P
- C) State the Maxwell's equations for good dielectric in integral and point form. (5)
  Also state their significance.
- **D**) With the help of neat schematic diagram, explain the working of an (5) Electromagnetic Pump.
- E) Explain Super refraction.

(5)

**2.** A) Two extensive homogeneous isotropic dielectrics meet on plane z = 0. (5+5)

For z > 0,  $\varepsilon_{r1} = 4$  and for z < 0,  $\varepsilon_{r2} = 3$ .

A uniform electric field  $\vec{E}_1 = 5\hat{a}_x - 2\hat{a}_y + 3\hat{a}_z$  (kV/m) exists for  $z \ge 0$ . Find,

- a)  $\vec{E}_2$  for  $z \leq 0$ .
- b) The angles  $E_1$  and  $E_2$  make with the interface.
- B) State Poynting theorem. Derive its final expression and explain the meaning of (2+5+3) each term.
- 3. A) What is ionosphere? Describe its various layers. Which layers are present during day and night time? Where maximum attenuation of electromagnetic waves takes place inside the ionosphere? (10)
  - B) State and derive FRISS transmission equation. (10)
- **4. A)** Determine the potential at the free nodes in the potential system of Fig.1. using (10) Finite Difference Method (Band Matrix Method).

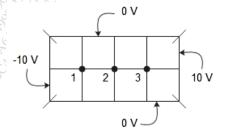



Fig.1.

**68148** Page 1 of 2

## Paper / Subject Code: 39204 / WAVE THEORY AND PROPAGATION

- B) Derive Helmholtz equations for Magnetic field in free space. (5)
- C) For the normal incidence, determine the amplitudes of reflected and transmitted  $\vec{E}$  and  $\vec{H}$  at interface of two regions at z=0. Given: Incident  $E_i=1.5\times 10^{-3}$  (V/m);  $\varepsilon_{r1}=8.5$ ;  $\mu_{r1}=1$ ;  $\sigma_1=0$ . Second region is free space.
- 5. A) Explain formation of duct and condition for duct propagation. (10)
  - B) Obtain an expression for MUF in terms of d, H and f<sub>c</sub>. (5+5) If a high frequency communication link is to be established between two points on the Earth 2000 km away, and the reflection region of ionosphere is at height of 200 km and has critical frequency of 5 MHz, then calculate the MUF for the given path.
- **6.** A) Explain the formation of inversion layer in troposphere. (5)
  - B) Define critical frequency as a measure of ionospheric propagation and determine critical frequency for reflection at vertical incidence if the maximum value of electron density is  $1.24 \times 10^6$  per CC.
  - C) Four like charges of 30  $\mu$ C each are located at four corners of a square, the diagonal of which measures 8 m. Find the force on 150  $\mu$ C charge located at the center of square.

68148 Page 2 of 2