(3 Hours)

[Total Marks:80]

N.B.:

- 1. Question No.1 is compulsory.
- 2. Attempt any three questions out of the remaining five.
- 3. Assume suitable data wherever necessary.

Q1]. Answer the following

[20]

- a) Sketch even and odd parts of $e^{-t}u(t)$
- b) State and prove time shifting property of Continuous Time Fourier Transform.
- c) Explain properties of ROC in Laplace Transform.
- d) Consider the following signal x(t) and h(t) find x(t)h(t+1), x(t)h(-t), x(t-1)h(1-t) and x(1-t)h(t-1).

e) Describe Gibbs Phenomenon in signal generation.

Q2] (a) Compute the exponential Fourier Series of x(t)

[10]

Q2b) Determine Laplace transform and ROC of

[10]

$$e^{2t} u(t) + e^{-2t} u(-t)$$
,

Q3a) Sketch following signals

[10]

(i)
$$x(n) = u(n+2)u(-n+3)$$

(ii)
$$x(n) = u(n+4) - u(n-2)$$

77135

Page 1 of 2

Paper / Subject Code: 39205 / SIGNALS AND SYSTEMS

Q3b)	Find the transfer function and unit sample response	
	zero initial condition $y(n) = x(n) - 0.25y(n-2)$.	[10]

Q4a) Find the transfer function of the systems governed by following impulse response [10]

$$h(t) = (2+t) e^{-3t} u(t)$$

Q4b) Find Fourier transform of following signals

(a)
$$e^{at}u(-t)$$
 [5]

(b)
$$te^{-at}u(t)$$
 [5]

Q5a) Find DTFT of x (n) =
$$(\frac{1}{4})^n u(n+1)$$
 [5]

- Q5b) Determine discrete time Fourier series of x (n) = $2\sin\sqrt{3} \pi n$ [5]
- Q5c) Determine cross correlation of sequence $x(n) = \{1, 1, 2, 2\}$ and $y(n) = \{1, 3, 1\}$ [10]
- Q6a) Perform convolution of $x_1(t) = cost \ u(t)$; $x_2(t) = u(t)$ using convolution integral. [10]
- Q6b) Using long division, determine the inverse Z-transform of [10]

$$X(z) = \frac{z^2 + z + 2}{z^3 - 2z^2 + 3z + 4}; ROC; |Z| < 1$$

77135