(3 Hours) Marks: 80

[01]

[01]

- **N.B.**: (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining five
 - (3) Figures to the right indicate full marks
 - (4) Assume suitable data if necessary and mention the same in answer sheet.

Q.1 Attempt the questions.

- a) In the circuit given in Fig. 1(a) if the voltage V+ and V- are to be amplified by the same factor, the value of R should be _____. [01]
 - i) 3.3k ii) 33k iii) 330 Ω iv) None of these. **Justify.** [04]
- b) If the input to the ideal comparator shown in Fig. 1(b) is a sinusoidal signal of 8 volt peak to peak without any DC component, then the duty cycle of the output comparator is ______.
 - i) 33.33% ii) 25% iii) 20% iv) None of these. **Justify.**[04]
- c) What is the frequency of IC 555 astable multivibrator shown in Fig. 1(c)? [01]
 i) 241 Hz ii) 178 Hz iii) 78 Hz iv) 8 Hz.

 Justify. [04]
- d) An amplifier using OPAMP with slew rate $SR=1~V/\mu s$ has a gain of 40 dB. If this amplifier has to amplify sinusoidal signal of 20 kHz faithfully without any slew rate induced distortion, then the input signal must not exceed
 - i) 795 mV ii) 395 mV iiii) 79.5 mV iv) 39.5 mV. **Justify.**[04]

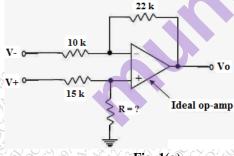
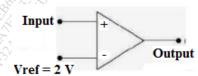
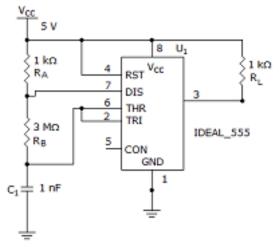




Fig. 1(a)

Fig. 1(b)

Fig. 1(c)

Page 1 of 2

Paper / Subject Code: 40803 / Linear Integrated Circuits

Q.2	a) Sketch the implementation of an instrumentation amplifier using three opamps and explain its operation.	[10]
	b) Compare ideal and practical opamp.c) Explain current foldback protection in voltage regulators.	[5] [5]
Q.3	a) Design a Schmitt trigger circuit to convert 5V, 1kHz sinusoidal signal to square wave using 741IC, $V_{UT} = 0.8 \text{ V}$, $V_{LT} = -0.8 \text{ V}$ and $\pm V_{sat} = \pm 11 \text{ V}$. Draw its transfer characteristics, input and output waveforms.	[10]
	b) With the help of circuit diagram, derive the expression of output analog voltage for a weighted resistor DAC.	[10]
Q.4	a) Design an IC 555 astable multivibrator for an output frequency 1 kHz and a duty cycle of 60%.	[10]
	b) With the help of a functional block diagram explain the working of voltage regulator LM317 to give an output voltage variable from 6 V to 12 V to handle maximum load current of 500 mA.	[10]
Q.5	a) Design a Wein Bridge oscillator using opamp to oscillate at a frequency of 965 Hz and explain the working of Wein bridge oscillator.	[10]
	b) List and explain the various performance parameters of DAC.	[10]
Q.6	Short notes on: (Attempt any four) a) Comparison of linear and switching regulators. b) Active filters using opamp c) Precision rectifiers d) PLL IC 565 e) Widlar current source	[20]
18 8 G		

71248 Page 2 of 2