[Total Marks: 80] (3 Hours) | N.B | | (1) | Question No. 1 is compulsory. | P. | | |-----|------------|------------|--|----------|--| | | | (2) | Solve any three questions from remaining five questions. | | | | | | (3) | Figures to the right indicate full marks . | | | | | | (4) | Assume suitable data if necessary and mention the same in answer sheet. | | | | 1. | (a) | | te biasing techniques of Enhancement Type MOSFET and explain any one technique detail. | 05 | | | | (b)
(c) | Ex
De | plain Transformer Coupled Amplifier and give its Advantages and Disadvantages. fine efficiency for a Power Amplifier and write the expression for the same. State the iciency of Class A, Class B and Class C Amplifiers respectively. | 05
05 | | | | (d) | | Give the basic principle of an Oscillator. State the types of Oscillators. | | | | 2. | (a) | A_{v} | sign a two stage RC coupled CS – CE Amplifier to meet following specifications: ≥ 750 , S ≤ 10 , R _i ≥ 1 M Ω , V _{cc} = 10 V. | 15 | | | | | As: | sume the following data: $\beta_{typ}=290$, $h_{ie}=4.5k\Omega$, $g_{mo}=5000\mu U$, $I_{DSS}=7mA$, $=50k\Omega$, $V_P=-4V$. | | | | | (b) | | et various negative feedback topologies. Sketch any one topology. | 05 | | | 3. | (a) | im | etch Circuit Diagram, AC equivalent Model and Derive expressions for Input pedance, Output Impedance, Voltage Gain and Current Gain of a two stage CE applifier. | 10 | | | | (b) | For | ra 'n' stage cascaded amplifier, show that overall lower 3 dB cut – off frequency is $=\frac{f_L}{\sqrt{2^{1/n}-1}}$ and overall higher frequency is $f_H'=f_H(\sqrt{2^{1/n}-1})$. | 10 | | | 4. | (a)
(b) | | aw a neat diagram of Class AB power Amplifier and explain its working. nat is Cascode Amplifier? Explain in detail. | 10
10 | | | 5. | (a) | Dra
san | aw RC phase shift oscillator using BJT and derive the frequency of oscillation for ne. | 10 | | | | (b) | En | umerate the effects of negative feedback on Gain, Bandwidth, Distortion, Input and tput Impedance. | 10 | | | 5. | (a)
(b) | Ca | mpare Small Signal and Large Signal Amplifer. lculate frequency of Oscillation for Hartley Oscillator if L_1 =5mH, L_2 = 2mH and = 0.5 μ F. | 05
05 | | | | (c)
(d) | Ex
Sk | plain the concept of Heat Sink in detail required for Power Amplifiers. etch Symbol of n-channel and p-channel Depletion MOSFET. State giving reasons, y it is known as depletion MOSFET? | 05
05 | | | | | 80 CY | (A) 22 .94 67 .15 87 67 67 .77 67 67 | | |