(3 Hours) [Total Marks: 80]

N.B.: 1) Question No. 1 is Compulsory.

- 2) Answer any THREE questions from Q.2 to Q.6.
- 3) Figures to the right indicate full marks.

1) a) If
$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$
 then find the eigen values of $6A^{-1} + A^3 + 2I$ [05]

- b) Determine whether the given vectors $\mathbf{u} = (-4,6,-10,1), \mathbf{v} = (2,1,-2,9)$ are orthogonal with respect to the Euclidean inner product [05]
- c) The probability density function of a random variable x is zero except at x = 0, 1, 2 and

$$p(0) = 3\alpha^3$$
, $p(1) = 4\alpha - 10\alpha^2$, $p(2) = 5\alpha - 1$. Find α [05]

d) Evaluate
$$\oint_{c} \frac{z+6}{z^{2}-4} dz$$
 where c is (i) $|z|=1$ (ii) $|z-2|=1$. [05]

2) a) Using Rayleigh-Ritz method, find an appropriate solution for the extremal of the functional

$$I = \int_{0}^{1} \left[2xy - y^{2} - y'^{2} \right] dx \text{ given y(0)=y(1)=0}$$
 [06]

b) Using Cauchy's Residue theorem evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta}$$
 [06]

c)A random variable X has the probability distribution given below:

X=x	-2	3	1
P(X=x)	1/3	1/2	1/6

Find i) the moment generating function ii) the first four moments about the origin [08]

3) a) Compute
$$A^9 - 6A^8 + 10A^7 - 3A^6 + A + 1$$
 where $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ [06]

b) Verify Cauchy – Schwartz inequality for the vectors u=(-4,2,1) &v=(8,-4,-2) [06]

c) Obtain Taylor's or Laurent's series expansion of the function $f(z) = \frac{1}{z^2 - 3z + 2}$ when

(i)
$$|z| < 1$$
 (ii) $1 < |z| < 2$ [08]

Paper / Subject Code: 40801 / Applied Mathematics-IV

4) a)Obtain the equation of the line of regression of Y on X for the following data and estimate Y when X = 73

[06]

Χ	70	72	74	76	78	80
У	163	170	179	188	196	200

b)Show that the functional $\int_{0}^{x_{2}} \left[y^{2} + x^{2} y' \right] dx$ assumes extreme values on the straight line y = x[06] c)Let R³ have the Euclidean inner product. Use the Gram-Schmidt process to transform

[08] the basis vectors $u_1=(1,0,0), u_2=(3,7,-2), u_3=(0,4,1)$ in to an orthonormal basis

5) a)Evaluate
$$\iint_{c} \frac{1}{z} \cos z \, dz \text{ where c is the ellipse } 9x^2 + 4y^2 = 1$$
 [06]

b) Seven dice are thrown 729 times. How many times do you expectat leastfour 10 dice to show three or five? [06]

c) Show that the matrix $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \end{bmatrix}$ is diagnosable. Find the diagonal form D and the $\begin{bmatrix} -16 & 8 & 7 \end{bmatrix}$

diagonalaising matrix M. [80]

- 6) a) A continuous random variable X has the p.d.f. defined by f(x) = A + Bx, $0 \le x \le 1$. If the mean of the distribution is $\frac{1}{2}$ find A and B [06]
 - b) Find e^A , if $A = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ [06]
 - c) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)} \qquad (a > 0, b > 0)$ [80]

68739