(3 Hours) Marks: 80

- **N.B.:** (1) Question No.1 is **compulsory**.
 - (2) Solve any **three** questions from **remaining five** questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if required and mention the same in the answer sheet.
- Q.1 Solve any **five** of the following: -

20

- (a) What is cross over distortion? How to overcome the same.
- (b) Consider a BJT has parameters f_T =500MHz at I_C = 1mA, β = 100 and $C\mu$ = 0.3pF. Calculate bandwidth of f_β and capacitance $C\pi$ of a BJT.
- (c) Implement $Vo = -(3V_1 + 4V_2 + 2V_3)$ using OpAmp.
- (d) Define the CMRR of Differential Amplifier. Why constant current source biasing is preferred for Differential Amplifier?
- (e) Draw the circuit diagram of widlar current source and derive the relationship between output current and reference current.
- (f) A zener voltage regulator as shown in **Fig. 1f** has $V_Z = 6.2V$. The input voltage varies from 10 V to 15 V and load current is 60 mA. To hold output voltage constant under all conditions what should be the range of series resistance (R_{Smin} and R_{Smax}) ($I_{Zmin} = 10$ mA, $P_{Zmax} = 2W$).

Fig. 1f

Q.2 (a) Determine the corner frequency and maximum gain of a bipolar common-emitter 10 circuit shown in **Fig. 2a**, with an input coupling capacitor.

Fig. 2a

- (b) Draw the circuits of OpAmp based integrator circuit and derive the expression for output voltage. What are the limitations of integrator circuit and how to overcome the limitations?
- Q.3 (a) Draw the small signal equivalent circuit of the bipolar differential amplifier. 10 Determine its output voltage in the general form for one sided output $V_O = A_d V_d + A_{cm} V_{cm}$, and hence the expressions for differential mode gain and common mode gain.
 - (b) For the circuit shown in **Fig. 3b**, Transistors parameters are $K_n=1mA/V^2$, 10 $V_{TN}=0.7V$, $C_{gs}=2pF$, $C_{gd}=0.2pF$, $\lambda=0$. Find the miller capacitance, mid band voltage gain and upper cut off frequency.

Q.4 (a) For the MOSFET differential amplifier shown in **Fig. 4a**, the transistor parameters are $K_{n1} = K_{n2} = 0.1 \text{ mA/V}^2$, $K_{n3} = K_{n4} = 0.3 \text{ mA/V}^2$, $V_{TN} = 1 \text{V}$ for all transistors, $\lambda = 0$ for M_1 , M_2 and M_3 , $\lambda = 0.01 \text{ V}^{-1}$ for M_4 . Determine the bias current I_Q , output resistance of current source, differential-mode voltage gain, common-mode voltage gain and CMRR for the differential amplifier.

Fig. 4a

- (b) Draw circuit diagram of cascode amplifier using BJT and derive expression for 10 voltage gain, input resistance and output resistance.
- Q.5 a) Draw and explain the working of Class A power amplifier (transformer coupled). 10 Derive the expression for efficiency.
 - (b) For the basic three transistor current source shown in **Fig. 5b**, the parameters are : $V^{+} = 10V, \ V^{-} = 0V \ \text{and} \ R_{1} = 12K\Omega, \ \text{for all transistors} \ V_{BE\ (on)} = 0.7V,$ $\beta = 100 \ \text{and} \ V_{A} = \infty. \ \text{Calculate value of each current shown in Fig. , i.e. } I_{REF}, I_{C1},$ $I_{B1}, I_{B2}, I_{E3}, I_{B3}.$

Fig. 5b

Q.6 Write short notes on any **four** of the following:-

20

- (a) Millers Theorem.
- (b) Active Filters.
- (c) Transistorized series regulator
- (d) Wilson current source.
- (e) Power MOSFET.

