Time: 3 hour Max. Marks: 80

Q1 is compulsory. Attempt any three from Q2 to Q6.

Q1	Solve any Four 5 marks each
A	What is the effect of coupling and bypass capacitors on the frequency
	response of a single stage amplifier?
В	Explain Miller's capacitance theorem.
C	Compare BJT CE amplifier and JFET CS amplifier.
D	What is crossover distortion in Class B power amplifiers?
E	Explain Zener diode as a voltage regulator.

Q2 10 Marks each

A Draw and explain high frequency model for BJT in CE configuration
B Draw and explain a series fed class A power amplifier with the help of neat diagram and waveforms and derive the expression of power efficiency.

O3 10 marks each

A Draw the voltage divider biasing circuit for JFET and derive the quiescent point (V_{DSQ},I_{DQ}) equations.

Draw a small signal equivalent circuit of an E-MOSFET CS amplifier given in fig. 1 and derive the expression for voltage gain, input resistance and output resistance.

Q4

A Explain the operation of a semiconductor pn junction diode with the help of VI characteristics.

B What is thermal runaway and how it can be avoided?

C Calculate low cutoff frequencies due to coupling and bypass capacitors of the circuit given in fig. 2

10 marks

Q5 A Determine f_{β} an

Determine f_{β} and f_T for the given circuit. Refer Fig. 3

$$R_s = 1 \text{ k}\Omega, R_1 = 40 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, R_E = 2 \text{ k}\Omega, R_C = 4 \text{ k}\Omega, R_L = 2.2 \text{ k}\Omega$$

$$C_s = 10 \,\mu\text{F}, C_C = 1 \,\mu\text{F}, C_E = 20 \,\mu\text{F}$$

$$h_{fe} = 100, r_o = \infty \ \Omega, V_{CC} = 20 \ V$$

$$C_{\pi}(C_{be}) = 36 \text{ pF}, C_{u}(C_{bc}) = 4 \text{ pF}, C_{ce} = 1 \text{ pF}, C_{W_{e}} = 6 \text{ pF}, C_{W_{o}} = 8 \text{ pF}$$

В Determine the input impedance, output impedance, voltage gain and current gain for the given circuit. Refer fig. 4

10 Marks each

Derive the equation of CMRR for the MOS differential pair amplifier. Explain the operation of a MOS differential amplifier with differential mode input signal