Ti	me: 3 hou	rs Max. Marl	ks: 80
	N.B. 1) Q	Question No. 1 is compulsory.	
	2) A	Attempt any three from the remaining questions.	
]		Solve the following questions:	5
		State and prove Demorgan's theorem with the help of proper example.	5
	b)	Represent the decimal number 27 in binary form using	5
		1) Binary code 2) Gray code	5 ,
	,	Explain working of universal shift register with the help of	5
		nt operating modes.	
	,	Design 4:1 multiplexer using VHDL/Verilog code.	3
2	2 a)	i) Convert the following binary numbers to their decimal	10
		equivalent numbers.	
		1) 10010111 2) 10111.0110	
		ii) Convert the following decimal numbers to their binary	
		equivalent numbers.	
		1) $(79.515)_{10}$ 2) $(109.125)_{10}$	10
47		Simplify the following three-variable expression using Boolean	10
	<u> </u>	algebra.	
	i)	$Y(A, B, C) = \sum m(0, 1, 3, 4, 7)$	
	ii)	$Z(A, B, C) = \sum m(0, 1, 2, 3, 4, 5, 6, 7)$	
3	a) a	Simplify the following four-variable Boolean functions using	10
		Quine-McCluskey method.	
7		$Y (A, B, C, D) = \sum_{i=1}^{n} (2, 4, 5, 9, 12, 13)$	
		i) Convert S-R Flip-Flop to T Flip-Flop.	10
	. 55 T	ii) Convert J-K Flip-Flop to T Flip-Flop.	
4		a) Simplify the following Boolean expressions using K-map	10
		and implement obtained expressions using suitable gates.	
		i) $Q(A, B, C, D) = \pi M (1, 2, 5, 6, 8, 9, 15)$	
		ii) R (A, B, C, D) = π M (0, 1, 2, 3, 5, 6, 7, 12)	10
		b) Differentiate between PAL (Programmable Logic Array)	10
		and PLA (Programmable Array Logic) with the help of	
	, ,,	suitable example.	10
	a)	Design and explain 2-bit magnitude comparator.	10
	b)	Prove that NAND and NOR gates are universal gates	10
6	a)	Explain working of PISO (Parallel Input Serial Output) and	10
		SIPO (Serial Input Parallel Output) types of shift registers.	
	b)	Implement half subtractor using suitable gates	5
		Design 8:1 Mux using 4:1 Mux.	5
