(3 Hours) [Total Marks: 80]

[5]

N.B.: 1) Question No. 1 is Compulsory.

- 2) Answer any THREE questions from Q.2 to Q.6.
- 3) Figures to the right indicate full marks.
- Q 1. a) Evaluate the Laplace transform of $L[(\sin 2t \cos 2t)^2]$
 - b) Determine the constants a, b, c, d so that the function $f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$ is analytic [5]
 - c) If $\phi = 3x^2y y^3z^2$ find $\nabla \phi$ at the point P (1,-2,-1) [5]
 - d) Obtain half range sine series for $f(x) = x^2 \text{ in } 0 < x < 3$ [5]
- Q 2. a)Construct analytic function whose real part is $e^x \cos y$ [6]
 - b) Find the Fourier series for $f(x) = |x| \ln (-2,2)$. [6]
 - c) Find the Laplace transform of the following

i)
$$L[t\sqrt{1+\sin t}]$$
 ii) $L\left\{\frac{\sin t \sin 5t}{t}\right\}$ [8]

- Q 3. a) Prove that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ [6]
 - b) Evaluate inverse Laplace transform using Convolution Theorem $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$ [6]
 - c) Show that the vector field $\vec{F} = (2xy + z^3) \hat{i} + x^2 \hat{j} + (3xz^2 + 2z) \hat{k}$ is conservative and find

$$\phi(x,y,z)$$
 such that $\overline{F}=\nabla\phi$.

Q 4 a)Find bilinear transformation which maps the points z=0,i,-2i of z plane onto the points

$$w = -4i, \infty, 0$$
 of w plane [6]

- b) Prove that $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \frac{3x^2 1}{2}$ are orthogonal over (-1,1). [6]
- c) Find the Fourier transform of $f(t) = e^{-|t+1|}$ [8]
- Q 5 a) Solve Using Laplace transform $\frac{d^2y}{dt^2} 4y = 3e^t$ where y(0) = 0 & y'(0) = 3 [6]

68737 Page **1** of **2**

Paper / Subject Code: 51201 / Applied Mathematics-III

b) Find Complex form of the Fourier series for $f(x) = e^{ax}$ in $-\pi < x < \pi$

- [6]
- c) Verify Green's Theorem for $\oint_C 2y^2 dx + 3xdy$ where C is the boundary of the closed region
 - bounded by $y = x^2$ and y = x.

[8]

Q 6. a) Evaluate $L^{-1} \left[\frac{se^{-\frac{s}{2}} + \pi e^{-s}}{(s^2 + \pi^2)} \right]$

[6]

b) Find the map of the line x-y=1 by transformation $w = \frac{1}{z}$

- [6]
- c) Using Stoke's theorem evaluate $\oint (y dx + z dy + xd z)$ where C is the curve of intersection of the
 - sphere $x^2 + y^2 + z^2 = a^2$ and plane x + z = a

