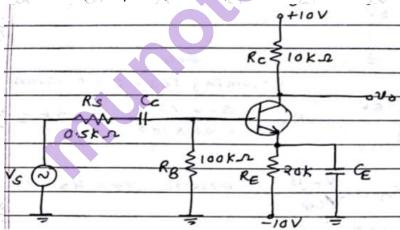
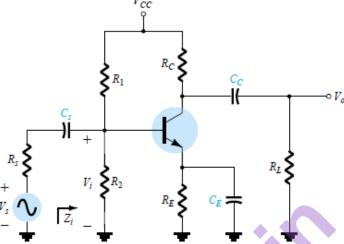
Duration: 3hrs [Max Marks:80]

N.B.: (1) Question No 1 is Compulsory.


- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR

[20]


[10]

- a State and explain Miller's Theorem.
- **b** Draw and explain working of EMOSFET with suitable diagram.
- c Differentiate Small Signal Amplifier and Large Signal Amplifier
- **d** Explain the concept of DC load line, Q point and region of operation with suitable diagram.
- e Draw frequency response of single stage CE amplifiers showing effect of various capacitors.
- 2 a Explain classification of power amplifier. Explain analysis of any power amplifier with diagram. [10]
 - **b** For given circuit diagram determine small signal voltage gain, input resistance [10] and output resistance. (Take β =100, V_A =100)

- 3 a Explain high frequency response of CS (E-MOSFET) amplifier. [10]
 - b Design a class A transformer coupled power amplifier for the following requirements: Output A.C. power = 5 watts, Load resistance = 12 ohms, DC supply voltage = 12 volts SICO ≤ 8.Calculate overall efficiency at full load.

- 4 a Derive expressions for Zi, Zo, Av and Ai of CE Amplifier using hybrid pi Model. [10]
 - b v_{cc} [10]

Determine the lower cutoff frequency for the network of Fig. 11.16 using the following parameters:

$$C_s = 10 \ \mu\text{F},$$
 $C_E = 20 \ \mu\text{F},$ $C_C = 1 \ \mu\text{F}$
 $R_s = 1 \ \text{k}\Omega,$ $R_1 = 40 \ \text{k}\Omega,$ $R_2 = 10 \ \text{k}\Omega,$ $R_E = 2 \ \text{k}\Omega,$ $R_C = 4 \ \text{k}\Omega,$
 $R_L = 2.2 \ \text{k}\Omega$
 $R_C = 4 \ \text{k}\Omega,$ $R_C = 4 \ \text{k}\Omega,$

- 5 a Draw and explain DC transfer characteristics of MOSFET. Explain operation of E-MOSFET with differential mode signal mode..
 - **b** Draw and explain Small signal analysis of CS (EMOSFET) amplifiers. [10]
- 6 a State different types of Coupling in multistage amplifiers with suitable diagrams and explain any one coupling method with its advantages and disadvantages. [10]
 - b Derive equation for Differential mode gain, Common mode gain and CMRR for MOSFET differential amplifier using small signal analysis.
