Paper / Subject Code: 49603 / DIGITAL ELECTRONICS

(3 Hours)	Max Marks: 80
-----------	---------------

N:B:

1. Question No. 1 is compulsory.

- 2. Out of remaining questions, attempt any three questions.
- 3. Assume suitable additional data if required.
- 4. Figures in brackets on the right hand side indicate full marks.

Q.1	a) Perform following subtraction using 2's compliment. i) $(44)_{10} - (66)_{10}$ ii) $(76)_{10} - (34)_{10}$	[5]
	b) Define Noise margin, Propagation delay and Power dissipation.	[5]
	c) Compare combinational circuits and sequential circuits.	[5]
	d) Compare TTL and CMOS logic.	[5]
Q.2	a) Simplify following expression using K-map and implement using only	[10]
	NOR gates. $F(A,B,C) = \sum_{i=1}^{n} m(1,4,5,6,7)$	
	b) Convert D flip flop to T flip flop.	[05]
	c) Explain race around condition in JK flip flop.	[05]
Q.3	a) Minimize the following expression using Quine McClusky Technique	[10]
	$F(A,B,C,D) = \sum m (2,3,6,7,8,9,13,15)$	
	b) Design full adder using logic gates.	[10]
Q.4	a) Design mod-10 ripple up counter using JK flip flop. Draw its timing diagram.	[10]
	b) Implement the following function using single 8:1 Multiplexer and logic gates. $F(A, B, C, D) = \sum_{i=1}^{n} m(0,1,2,4,5,6,8,9,10,12,13,15)$.	[10]
Q.5	a) Explain the various features of VHDL and its modelling style.	[10]
555 500	b) Design mod-5 synchronous up counter using T flip flop.	[10]
Q.6	a) Write short note on FPGA.	[10]
	b) What is shift register? Explain any one type of shift register.	[10]

0