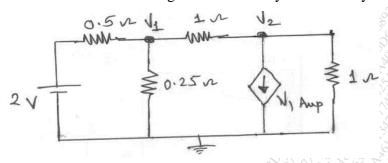
Paper / Subject Code: 51204 / Circuit Theory and Networks

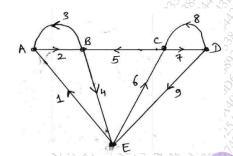
[Time: 3 Hours] [Total Marks: 80]

5

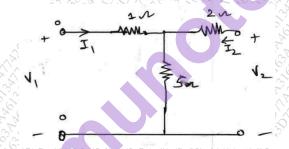
5


5

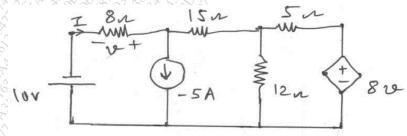
5


10

N.B.: 1. Question no.1 is compulsory.

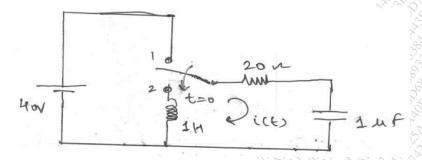

- 2. Attempt any three from remaining 5 questions.
- Q1 a) Determine the node voltages V1 and V2 by Nodal Analysis.

b) Find incidence Matrix (A) for the graph shown in figure.


c) Find the transmission parameters [A, B, C, D] for the network shown in the fig.

d) Test whether F(s) is a positive real function

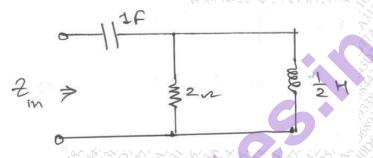
$$F(s) = \frac{s^3 + 6s^2 + 7s + 3}{s^2 + 2s + 1}$$


Q2 a) Find the current 'I' in 8Ω resistor by superposition theorem.

77538 Page 1 of 4

b) The switch in the credit shown is charged from position and Networks '2' at t=0. Steady 5 state conditions having reached before switching. Find the values of

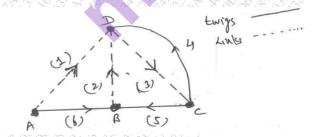
$$i, \frac{di}{dt}$$
 and $\frac{d^2i}{dt^2}$ at $t = 0^+$

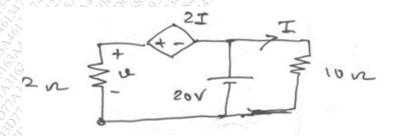


c) Determine the driving point impedance function $z_{in}(s)$ for the Network shown in fig. and also draw pole-zero plot.

10

5


5

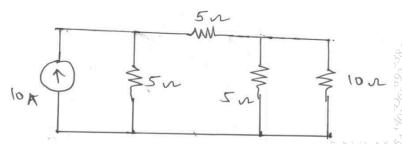

Q3 a) Synthesize z(s) into Foster -1 and cauer-1 forms.

$$z(s) = \frac{s^2 + 12s^2 + 32s}{s^2 + 7s + 6}$$

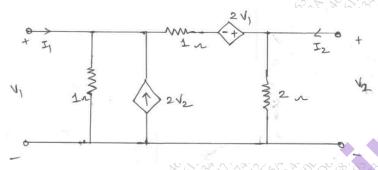
b) Determine f-loop matrix for the graph shown in fig.

c) Find voltage across 2Ω resistor.

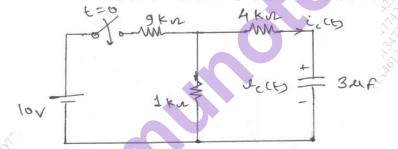
77538 Page 2 of 4

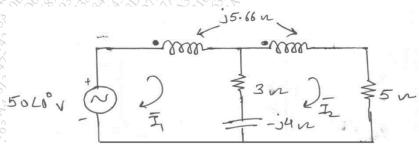

Paper / Subject Code: 51204 / Circuit Theory and Networks

Write f-cut set matrix for the circuit shown and hence obtain matrix Node equation using **Q4** 10 Graph Theory.

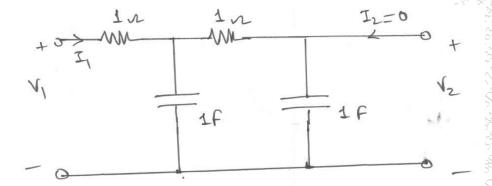

10

5

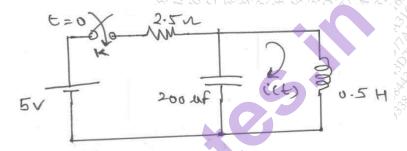

5


For the Network shown in the figure determine z and y parameters. b)

In the figure shown the switch is closed at t=0 with no initial charge on the capacitor. Q5 **10** Determine $v_c(t)$ and $i_c(t)$ for $t \ge 0$



- Test the following for Hurwitz polynomial i. $P(s) = s^6 + 3s^5 + 8s^4 + 15s^3 + 17s^2 + 12s + 4$
 - $P(s) = s^5 + s^3 + s$ ii.
- c) Write Mesh equations for the magnetically coupled circuit shown in fig.



77538

5

b) For the circuit shown in the figure, the switch 'K' is closed at t = 0 and steady state is attained before closing the switch. By using 'Laplace Transform' techniques determine i(t) for $t \ge 0$.

c) Derive the condition of Reciprocity and symmetry for ABCD parameters.

77538 Page 4 of 4