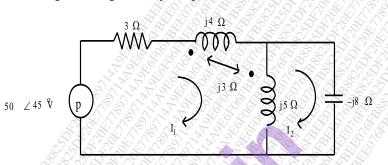
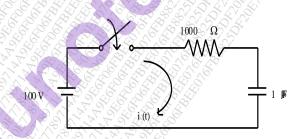
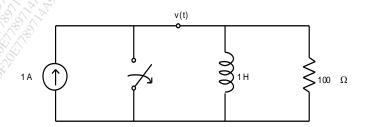
Paper / Subject Code: 49605 / CIRCUITS AND TRANSMISSION LINES


Time: 3 hours Total Marks: 80

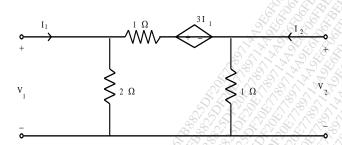
05


05

N.B.


- 1) Question No. 1 is Compulsory
- 2) Out of remaining questions, attempt any three
- 3) Assume suitable data if required
- 4) Figures to the right indicate full marks
- 1 (A) Draw equivalent circuit for given magnetically coupled circuit.

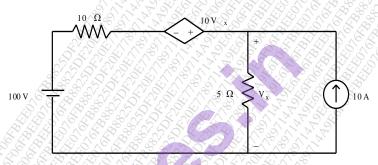
(B) In the network of Fig. switch is closed at t = 0. With capacitor uncharged, find value for i and $\frac{di}{dt}$ at $t = 0^+$.



- (C) Prove that AD BC = 1 for Transmission parameters.
- (D) Design an m-derived T section high pass filter with a cut-off frequency of 2 kHz. **05** Design impedance of 700Ω and m = 0.6.
- 2 (A) In the network shown in Fig., at t = 0, switch is opened. Calculate v, $\frac{dv}{dt}$, $\frac{d2v}{dt2}$ at t = 0+.

60661 Page **1** of **3**

(B) For the network shown in Fig., find Y and Z-parameters.

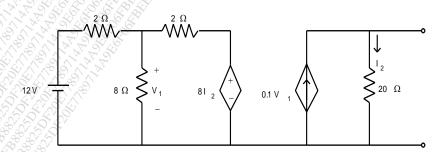

10

10

10

10

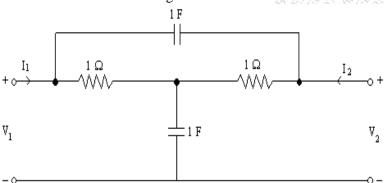
3 (A) Determine the current through 10Ω resistor in the network of Fig.



- (B) The parameters of a transmission lines are $R=65\Omega/km$, L=1.6mH/km, G=2.25 10 mmho/km, C=0.1 μ F/km. Find
 - i) Characteristic Impedance
 - ii) Propagation Constant
 - iii) Attenuation Constant
 - iv) Phase Constant at 1 kHz
- 4 (A) Determine whether following functions are positive real

i)
$$\frac{s^2 + 2s + 4}{(s+1)(s+3)}$$

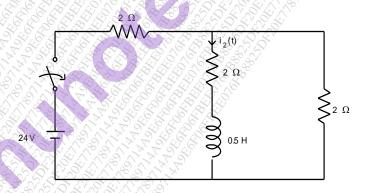
ii)
$$\frac{s^2 + 25s + 25}{s + 4}$$


(B) Find Norton's equivalent network.

60661 Page 2 of 3

Paper / Subject Code: 49605 / CIRCUITS AND TRANSMISSION LINES

5 (A) Find Y-parameters for the network shown in Fig.


10

10

(B) Realize the following functions in Foster II and Cauer I form

 $Z(s) = \frac{2(s^2+1)(s^2+9)}{s(s^2+4)}$

- 6 (A) A transmission line has a characteristics impedance of 50 ohm and terminate in a load $Z_L = 25 + j50$ ohm. Use smith chart and Find VSWR and Reflection coefficient at the load.
 - (B) Determine current i2 (t) in the network of Fig., when switch is closed at t = 0. The inductor is initially deenergized.

60661