Paper / Subject Code: 53004 / Elective II 3) Digital Control System

Time: 3 Hours Marks: 80

- 1. Attempt Any Four Questions
- 2. Question No. 1 is Compulsory
- 3. Marks to the right indicate full marks
- 4. Assume suitable data wherever necessary.
- 1. Answer in brief. Solve any four

(20)

(10)

- a. What is an ideal sampler? Explain it's operation.
- b. For a system shown by block diagram below, obtain overall transfer function $\frac{C(z)}{R(z)}$

- c. Derive relationship between discrete state space model and z transfer function.
- d. What are the advantages of a state variable model as compared to transfer function model?
- e. Explain the concept of Controllability and Observability of a given state space model.

Q2.

- a. Obtain relationship between s plane and z plane mapping using finite difference approximation (10)
- b. State and explain the advantages of digital control as compared to analog control system. (10)

Q3.

- a. Obtain difference equation for a digital PI controller in recursive form. (10)
- b. Determine closed loop stability of a system whose characteristic equation is given by $P(z) = z^3 1.25z^2 1.375z 0.25 = 0$

Q4.

a. For a given system obtain state transition matrix.

$$x(k+1) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

$$y(k) = [1 \quad 0]x(k)$$
 $x(0) = [1 \quad 1]^T$

b. Explain the steady error constants for a typical digital control system, with a sampler in forward path. (10)

Q5

77944

a. Investigate Controllability and Observability of the following system

$$x(k+1) = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$$

(10)

(20)

b. Find out the state feedback gain matrix K for the following system by converting the system into controllable canonical form such that the closed loop poles are located at 0.5 and 0.6. (10)

$$x(k+1) = \begin{bmatrix} -1 & -1 \\ 0 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

- Q 6) Write short notes on any two:
 - a. State Observer based controller design
 - b. Impulse Invariance Method of discretization
 - c. Components of a Digital Control System

77944 Page 2 of 2