Time: 3 Hrs		3 Hrs	Marks: 80	
	2)	Question No.1 is compulsory. Attempt any three question out of remaining five questions. Assume suitable data whenever necessary.	53540	
			300	
1)			200	
	a)	Represent $(78)_{10}$ and $(0.6125)_{10}$ in single precision floating point.	05	
	,	Explain basic structure of 4 stage Pipeline.	05	
	c)	List Different I/O Access Methods. Explain any one detail.	05	
	d)	Differentiate between SRAM and DRAM.	05	
2)				
		a) Explain in detail organization of Cache Coherent – Non Uniform Memory Access.	10	
		b) What are the different types of pipeline Hazards.	10	
3)				
		a) Explain Restoring Division algorithm and Perform (14) ÷ (6) using it.	10	
		b) What is necessity of replacement algorithm? Show how pages are replaced between cache and main memory using replacement policies:i) LRU	10	
		ii) FIFO		
		iii) LFU		
45				
4)				
		Explain Set Associative Mapping. Draw and explain a two-way set-associative mapping for cache that has lines of 16 bytes and a total size of 8 Kbytes. The 64-Mbyte main memory is byte addressable.	20	
5)		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
or or	7	a) What is micro programmed control? Explain in details. Write microinstruction for	10	
		MOV R ₀ ,[R ₁]. b) Describe Flynn's Classification for parallel computer architecture.	10 10	
		b) Describe Frynin's Classification for paramer computer architecture.	10	
6) V	Vri	te Short Notes on		
3.05	3,7	a) Superscalar Architectures.	10	
		b) Memory segmentation	10	
20				
200		*********		

77716