| Time: 3 Hours Max | | rs Max. Mar | rks: 80 | |-------------------|--|---|---------| | Note: | Question number 1 is compulsory. Solve any THREE out of remaining. Assume suitable data if necessary. Figures to the right indicate full marks. | | | | Q.1 | Attempt any FOUR | | | | | (A) | State and explain Gauss's Law. | (5) | | | (B) | Explain ground wave propagation. Which type of polarization is used for ground wave? | (5) | | | (C) | Explain FDM importance and advantages | (5) | | | (D) | Explain isotropic, omnidirectional and directional antenna with suitable examples. | (5) | | | (E) | In free space, E=e ^{j(wt-4x)} az V/m .Find H | (5) | | Q. 2 | (A) | Derive Maxwell's equation in integral & Point form for time varying field. | (10) | | | (B) | An electric field in a medium which is source free given by $E=1.5\cos(10^{8t}-\beta z)ax$ V/m where Em is given amplitude of E, ω is angular frequency & β is phase constant .Obtain D, B, H. Assume $E_r=1$, $\mu_r=1$. | (10) | | Q.3 | (A) | Explain Poynting vector. Derive Poynting theorem and describe significance of each term. | (10) | | | (B) | Explain MOM method in detail. State its advantages and drawbacks in detail. | (10) | | Q.4 | (A) | Derive the expression for radiation resistance in far field region of an infinitesimal dipole | (10) | | | (B) | Explain ionospheric propagation. A high frequency radio link has to be established between two points at a distance of 2000 km. on the earth's surface. Considering the height of 200 km and critical frequency of 5 MHz. Calculate MUF for given path. | (10) | | Q.5 | (A) | Classify and Explain different types of wave propogation. | (10) | | * · · · · · | (B) | What is line of sight propagation? Obtain expression for range of line of sight for space wave propagation in terms of antenna's transmitting and receiving heights. | (10) | | Q.6 | Atter | Attempt any TWO | | | | (A) | Explain folded dipole antenna and its applications. | (10) | | | (B) | Boundary conditions for static E and M fields. | (10) | | | (C) | Give the comparison of FDM, FEM and MOM. | (10) | ****** 1