
(3 hours) [Total Marks: 80]

10

Note:

- 1. Question-1 is compulsory.
- 2. Answer any three questions from remaining five.
- 3. Assume suitable data if necessary.
- **4.** Numbers in the right indicate marks.
- Answer any four of the following questions. (Each question carry 5 marks)
 - (a) Derive the relationship between discrete state space model and pulse transfer function.
 - (b) What is an observer? Why is it required?
 - (c) What are the advantages of state variable method for analysis of digital control system?
 - (d) State and explain Jury's stability criterion.
 - (e) Is it possible for an unobservable system to be detectable? Justify your answer.
- 2. (a) Obtain the closed loop transfer function for the following system G(s) = 1/s(s+1), H(s) = 1

- (b) Derive the relation between s plane and z plane using Bilinear Transformation technique.
- **3.** (a) For the given system obtain the state transmission matrix using CayleyHamilton method

$$x[k+1] = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x[k] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[k]$$

$$y[k] = [1 \quad 0]x[k], \qquad x[0] = [1 \quad 1]^T$$

71008

Paper / Subject Code: 32306 / Elective - I Digital Control System

(b) Consider the following system

$$\frac{Y(z)}{U(z)} = \frac{z+1}{z^2 + 1.3z + 0.4}$$

Represent the system in controllable canonical form, observable canonical form and diagonal canonical form.

4. (a) Investigate the controllability and observability for the following system

10

$$x[k+1] = \begin{bmatrix} 0 & 1 \\ -0.4 & -1.3 \end{bmatrix} x[k] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[k]$$

$$y[k] = [0.8 \quad 10]x[k]$$

x[k+1] = Gx[k] + Hu[k]y[k] = Cx[k]

(b) State and prove the Nyquist sampling theorem.

10

5. (a) Show that the following system is not completely observable

where,
$$G = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$$
, $H = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix}$

(b) Obtain the block diagram for the following pulse transfer function by

1) direct programming 2) standard programming 3) ladder

10

- $\frac{Y(z)}{U(z)} = \frac{2 0.6z^{-1}}{1 + 0.5z^{-1}}$
- **6.** Answer any two of the following questions.

20

- (a) Distinguish between reachability and controllability in discrete time systems.
- (b) Explain dead beat control using state feedback.
- (c) Write short note on state observer based controller design.
- (d) Digital PID controller.

programming