(3 Hrs) Total Marks: 80

(5)

(5)

(5)

(5)

NOTE:

- 1) Question number 1 is compulsory.
- 2) Attempt any three questions from the remaining five questions.
- 3) Assume suitable data wherever necessary.

- Q.1] Answer following questions.(any four)
 - a) A continuous time signal is shown in Figure. Draw following version of the signal.

(i)
$$x(t-2)$$
 (ii) $x(-t+2)$ (5)

b) Perform the following convolution

$$x(n)=u(n)-u(n-4)$$

$$v(n) = (0.5)^n u(n)$$

c) Determine the Laplace transform of

$$x(t) = cos(\Omega o t) u(t)$$

d) Find the initial value and final values of

$$x(z) = \frac{2z^{-1}}{1 - 1.8z^{-1} + 0.8z^{-2}}$$

- e) Find the Fourier transform of $x(n)=\{2, 1, 2\}$
- Q2] a) Test whether the following system is linear and causal? (4)

(i)
$$y(t) = 4x(t) + \frac{dx(t)}{dt}$$
 (ii) $y(t) = x(-t)$

b) consider a sinusoidal signal

 $x(t)=3\cos(1000 \pi t + 0.1 \pi)$

and let sampling frequency be Fs= 2 KHz.

- (i) Determine the expression for the sampled sequence x(n)=x(nTs) and determine its discrete time Fourier transform $x(\omega)=DTFT[x(n)]$
- (ii) Determine The Fourier Transform X(F) = FT(x(t))
- (iii) Recompute $x(\omega)$ from X(F) and verify that you obtain the same expression as in (i)
- c) Determine the natural response of the first order system governed by the equation $\frac{dy(t)}{dt} + 3y(t) = x(t); \quad y(0) = 2$ (8)

58996

Paper / Subject Code: 30704 / SIGNALS & SYSTEMS

Q3] a) Determine the inverse Z Transform of

$$X(z) = \frac{1}{1 - 0.8z^{-1} + 0.12z^{-2}}$$

- (i) If ROC is |z| > 0.6
- (ii) ROC is |z| < 0.2
- (iii) ROC is 0.2<|z|<0.6
- b) Compute the DFT of the sequence

$$x(n) = \{0, 1, 2, 3\}$$
. Sketch the magnitude and phase spectrum.

(10)

(10)

- Q4] a) State and prove initial and final value theorem of Laplace Transform and Z Theorem (10)
 - b) Determine the energy in the signal $f(t) = u(t) e^{-t}$

(10)

- (i) in the time domain
- (ii) by finding energy density spectrum and integrating over frequency.
- Q5] a)Find the Fourier series of the waveform shown below:

(10)

b) The impulse response of the continuous time system is given by $h(t)=e^{-5t}u(t)$. Determine the unit step response of the given system using convolution theorem of Laplace transform.

(10)

Q6] a) Explain Gibb's phenomenon

- (5)
- b) Determine the autocorrelation function and energy spectral density of $x(t)=e^{-at}u(t)$
- (5)

c) Determine the inverse Laplace transform of

(10)

$$X(S) = \frac{1}{(s+1)(s^2+s+1)}$$