Paper / Subject Code: 30603 / R F MODELING AND ANTENNAS

QP CODE: 22615

		(3 Hours)	Marks: 80				
N.B. :	(1)	Question No. 1 is compulsory.					
		Solve any three questions from the remaining five.					
		Figures to the right indicate full marks					
	(4)	Assume suitable data if necessary and mention the same in answer s	heet.				
Q.1	Attempt any four out of the remaining five						
	a) Compare striplines and Microstrip lines.						
	b) Explain how Richard's transformation and unit elements are useful in RF filter designing.						
	c) Explain near field and far field radiation related to antenna.						
	d) Write briefly about antenna array.						
	e) What	are characteristics of Horn antenna?					
Q.2	a) Explain with equivalent circuits the RF behaviour of resistor, capacitor and inductor.						
	b) Design a low pass composite filter with cut-off frequency 3 MHz and						
	impedance of 75 Ω . Place infinite attenuation pole at 3.08 MHz.						
Q.3		gn a maximally flat low pass filter with a cut-off frequency of 2 GHz,	[10]				
	_	edance of 50 Ω , and at least 15 dB insertion loss at 3 GHz with discrete components.	e Y				
	b) Explain the following terms related to basic antenna concepts with relevant						
	equations.						
	[i]						
	[ii]	Radiation Pattern					
	[iii]	Radiation Resistance					
	[iv]	Antenna Efficiency					
	[v]	Effective aperture					
Q.4	a) Derive radiation resistance of infinitesimal dipole.						
	b) Find t	the radiation pattern of an array of 2 isotropic point sources fed with	[10]				
		amplitude and opposite phase and spaced $\lambda/2$ apart. Find its HPBW					
	and F	NBW.					
Q.5	a) Explain working principle of Yagi-Uda antenna and draw its radiation						
Q.5	pattern. Mention its applications.						
	b) Draw the structure of microstrip antenna. Discuss its characteristics,						
	limita	tions and applications.					
Q.6		nort notes on the following :	[20]				
	a) Hazards of electromagnetic radiation						
	~ Y (%' \)	transmission formula					
	/ V=1 / 1 / * =1 .	antenna					
	d) Princ	iple of parabolic reflector antenna					
	15' 67' 6V 6V	J. A. J. N. J. A. V. AC. 1947 S. V. AM.					

EE3BC0983D326D114F812BDFD2BB6C1D

Paper / Subject Code: 30603 / R F MODELING AND ANTENNAS

Attenuation versus normalized frequency for maximally flat filter prototypes. Adapted from G. L. Matthaet, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0=1$, $\omega_0=1$, N=1 to 10)

N	21	R2	<i>g</i> 3	g4	25	<i>g</i> 6	£ 7	.28	<i>g</i> 9	#10	811
1	2,0000	(KH(K), [m ya kanisana ing mgamalayayaya ya	Caraca (September Company) and the Common Assessment September 1	moles a latin som more aformant of the	**************************	Accidences and process processes.	reta arregrega tulon laçonnih myughoyi	tigset had hittle Standards die der der verden voor	i ocean arrive a south confor-
2	1.4142	1.4142	1.0000								
.3	0000.1	2.0000	1.0000	0000.1							
4	0.7654	1.8478	1.8478	0.7654	0000.1						
5	0.6180	1,6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0,4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	0.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	0000,1	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1,4142	0,9080	0.3129	1.0000

Source: Reprinted from G. L. Manhaer, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Marching Networks, and Compling Structures, Artech House, Dedham, Mass., 1980, with permission.